【題目】如圖,在正方形ABCD中,AC為對角線,EAB上一點,過點EEF∥AD,與AC,DC分別交于點G,F(xiàn),HCG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,則SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】①∵四邊形ABCD為正方形,EF∥AD,

∴EF=AD=CD,∠ACD=45°,∠GFC=90°,

∴△CFG為等腰直角三角形,

∴GF=FC,

∵EG=EF﹣GF,DF=CD﹣FC,

∴EG=DF,

正確

②∵△CFG為等腰直角三角形,HCG的中點,

FH=CH,GFH=GFC=45°=HCD,

△EHF△DHC,

,

∴△EHF≌△DHC(SAS),

∴∠HEF=∠HDC,

∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,

正確;

:△EHF≌△DHC,

正確;

④∵,

∴AE=2BE,

∵△CFG為等腰直角三角形,HCG的中點,

∴FH=GH,∠FHG=90°,

∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,

△EGH△DFH,

,

∴△EGH≌△DFH(SAS),

∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,

∴△EHD為等腰直角三角形,

H點作HM垂直于CDM點,如圖所示:

設(shè)HM=x,則CF=2x,

∴DF=2FC=4x,

DM=5xDH=x,CD=6x,

SCFH=×HM×CF= x2x=x2 , SEDH= ×DH2= ×=13x2,

S△EDH=13S△CFH正確;

其中結(jié)論正確的有:①②③④,4個,

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是2015年12月月歷.

(1)如圖,用一正方形框在表中任意框往4個數(shù),記左上角的一個數(shù)為x,則另三個數(shù)用含x的式子表示出來,從小到大依次是 , ,

(2)在表中框住四個數(shù)之和最小記為a1,和最大記為a2,則a1+a2=

(3)當(dāng)(1)中被框住的4個數(shù)之和等于76時,x的值為多少?

(4)在(1)中能否框住這樣的4個數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過點A(1,0),且當(dāng)x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣ +bx+c的圖象分別交于B,C兩點,點B在第一象限.

(1)求二次函數(shù)y=﹣ +bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC的邊BC的中垂線DM交∠BAC的平分線ADD, DEAB于點EDFACF.連接DB、DC

(1)求證:DBE≌△DFC.

(2)求證:AB+AC=2AE

(3)如圖2,若ABC的邊BC的中垂線DM交∠BAC的外角平分線ADD, DEAB于點E,且AB>AC,寫出AE、BE、AC之間的等量關(guān)系。(不需證明,只需在圖2中作出輔助線、說明證哪兩個三角形全等即可)。

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD的邊BC上的任意一點,連接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求證:DE=BF+EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A為圓心,AC長為半徑畫四分之一圓,則圖中陰影部分的面積是(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為AB上一點,△ACE≌△BCD,AD2+DB2=DE2,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案