體育課上,老師訓練學生的項目是投籃,假設一名同學投籃后,籃球運行的軌跡是一段拋物線,將所得軌跡形成的拋物線放在如圖所示的坐標系中,得到解析式為y=-
1
5
x2+
2
5
x+3.3(單位:m).請你根據(jù)所得的解析式,回答下列問題:
(1)球在空中運行的最大高度為多少米;
(2)如果一名學生跳投時,球出手離地面的高度為2.25m,請問他距籃球筐中心的水平距離是多少?
(1)由題意得:
y=-
1
5
x2+
2
5
x+3.3,
=-
1
5
(x2-2x)+3.3,
=-
1
5
(x-1)2+3.3+
1
5
,
=-
1
5
(x-1)2+3.5,
最大高度為3.5米;

(2)當y=3.05時,x=2.5或x=-0.5(負值舍去),
當y=2.25時,x=3.5或x=-1.5(正值舍去),
∴他距籃球筐中心的水平距離是4米.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(-3,0),與y軸交于點C,點D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC,可得下列結論:①∠PCB=30°;②點P的坐標是(
3
2
,
3
2
);③若P、C兩點在拋物線y=-
4
3
x2+bx+c
上,則b的值是-
3
,c的值是1;④在③中的拋物線CP段(不包括C、P兩點)上,存在一點Q,使四邊形QCAP的面積最大,最大值為
9
3
16
.其中正確的有( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2
的圖象如圖,點A0位于坐標原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An-1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An-1BnAn=60°,菱形An-1BnAnCn的周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一次函數(shù)y=-2x的圖象與二次函數(shù)y=-x2+3x圖象的對稱軸交于點B.
(1)寫出點B的坐標______;
(2)已知點P是二次函數(shù)y=-x2+3x圖象在y軸右側部分上的一個動點,將直線y=-2x沿y軸向上平移,分別交x軸、y軸于C、D兩點.若以CD為直角邊的△PCD與△OCD相似,則點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一座拋物線拱橋架在一條河流上,這座拱橋下的水面離橋孔頂部3m時,水面寬6m,當水位上升1m時,水面寬多少m(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:點P(a+1,a-1)關于x軸的對稱點在反比例函數(shù)y=-
8
x
(x>0)的圖象上,y關于x的函數(shù)y=k2x2-(2k+1)x+1的圖象與坐標軸只有兩個不同的交點A﹑B,求P點坐標和△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案