如圖,在三角形紙片ABC中,AC=6,∠A=30º,∠C=90º,將∠A沿DE折疊,使點A與點B重合,則折痕DE的長為(     )
A.1B.C.D.2
D

試題分析:先根據(jù)三角形的內角和定理求得∠CBD的度數(shù),再根據(jù)折疊的性質可得∠A=∠DBE=∠EBC=30°,然后證得△BCE≌△BDE,根據(jù)全等三角形的性質可得CE=DE,再解Rt△ADE即可求得結果.
解:∵∠A=30°,∠C=90°,
∴∠CBD=60°.
∵將∠A沿DE折疊,使點A與點B重合,
∴∠A=∠DBE=∠EBC=30°.
∵∠EBC=∠DBE,∠BCE=∠BDE=90°,BE=BE,
∴△BCE≌△BDE.
∴CE=DE.
∵AC=6,∠A=30°,
∴BC=AC×tan30°=2
∵∠CBE=30°.
∴CE=2.即DE=2.
故選D.
點評:全等三角形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=CB,∠ABC=900,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC.

①求證:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠A=50°∠ABC=60°.
(1)若BD為∠ABC平分線,求∠BDC.
(2)若CE為∠ACB平分線且交BD于E,求∠BEC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一個正多邊形中,一個外角的度數(shù)等于一個內角度數(shù)的,求這個正多邊形的邊數(shù)和它一個內角的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=900,AC=,BC=3,△DEF是邊長為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點D在線段AC上,DE∥AB,設△DEF與△ABC重疊部分的周長為T。

(1)求證:點E到AC的距離為一常數(shù);
(2)若AD=,當a=2時,求T的值;
(3)若點D運動到AC的中點處,請用含a的代數(shù)式表示T。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,∠ABC與∠ACB的平分線相交于O,則∠BOC一定(      )
A.大于90°B.等于90°C.小于90°D.小于或等于90°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某校要把一塊形狀是直角三角形的廢地開發(fā)為生物園。如圖所示,∠ACB=90°,AC=80m,BC=60m。若線段CD為一條水渠,且D在邊AB上,已知水渠的造價是10元/米,則D點在距A點多遠處時此水渠的造價最低?最低造價是多少?在圖上標出D點。
   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,OB、OC分別平分∠ABC與∠ACB, MN∥BC,若AB=36,AC=24,則△AMN的周長是

A、60               B、66               C、72               D、78

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在12×12的正方形網格中,△TAB的頂點分別為T(1,1),A(2,3),B(4,2)。

(1)以點T(1,1)為位似中心,按比例尺(TA′:TA)3:1的位似中心的同側將TAB放大為△TA′B′,放大后點A,B的對應點分別為A′,B′,畫出△TA′B′,并寫出點A′,B′的坐標;
(2)在(1)中,若C(a,b)為線段AB上任一點,寫出變化后點C的對應點C′的坐標。

查看答案和解析>>

同步練習冊答案