【題目】如圖,拋物線y=﹣x2+bx+c交x軸于A(﹣3,0),B(4,0)兩點,與y軸交于點C,連接AC,BC.
(1)求此拋物線的表達式;
(2)求過B、C兩點的直線的函數(shù)表達式;
(3)點P是第一象限內(nèi)拋物線上的一個動點.過點P作PM⊥x軸,垂足為點M,PM交BC于點Q.試探究點P在運動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點P的坐標,若不存在,請說明理由;
【答案】(1)y=﹣x2+x+4;(2)y=﹣x+4;(3)存在,(1,4)或(,).
【解析】
(1)將點A,B的坐標代入y=﹣x2+bx+c即可;
(2)先求出點C的坐標為(0,4),設直線BC的解析式為y=kx+4,再將點B(4,0)代入y=kx+4即可;
(3)先判斷存在點P,求出AC,BC的長及∠OCB=∠OBC=45°,設點P坐標為(m,﹣m2+m+4),則點Q(m,﹣m+4),用含m的代數(shù)式表示出QM,AM的長,然后分①當AC=AQ時,②當AC=CQ時,③當CQ=AQ時三種情況進行討論,列出關(guān)于m的方程,求出m的值,即可寫出點P的坐標.
(1)將點A(﹣3,0),B(4,0)代入y=﹣x2+bx+c,
得,,
解得,,
∴此拋物線的表達式為y=﹣x2+x+4;
(2)在y=﹣x2+x+4中,
當x=0時,y=4,
∴C(0,4),
設直線BC的解析式為y=kx+4,
將點B(4,0)代入y=kx+4,
得,k=﹣1,
∴直線BC的解析式為y=﹣x+4;
(3)存在,理由如下:
∴A(﹣3,0),B(4,0),C(0,4),
∴OA=3,OC=OB=4,
∴AC==5,BC==4,∠OCB=∠OBC=45°,
設點P坐標為(m,﹣m2+m+4),則點Q(m,﹣m+4),
∴QM=﹣m+4,AM=m+3,
①當AC=AQ時,則AC=AQ=5,
(m+3)2+(﹣m+4)2=25,
解得:m1=1,m2=0(舍去),
當m=1時,﹣m2+m+4=4,
則點P坐標為(1,4);
②當AC=CQ時,CQ=AC=5,
如圖,過點Q作QD⊥y軸于點D,
則QD=CD=OM=m,
則有2m2=52,
解得m1=,m2=﹣(舍去);
當m=時,﹣m2+m+4=,
則點P坐標為(,);
③當CQ=AQ時,(m+3)2+(﹣m+4)2=2m2,
解得:m=(舍去);
故點P的坐標為(1,4)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為4,把它內(nèi)部及邊上的橫、縱坐標均為整數(shù)的點稱為整點,點P為拋物線的頂點(m為整數(shù)),當點P在正方形OABC內(nèi)部或邊上時,拋物線下方(包括邊界)的整點最少有( 。
A.3個B.5個C.10個D.15個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點.
(1)試確定這兩個函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點的坐標,并根據(jù)圖像寫出使反比例函數(shù)的值大于一次函數(shù)的值的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,∠B=90°,AB=12mm,BC=24mm,動點P從點A開始,以2mm/S的速度沿邊AB向B移動(不與點B重合),動點Q從點B開始,以4m/s的速度沿邊BC向C移動(不與C重合),如果P、Q分別從A、B同時出發(fā),設運動的時間為xs,四邊形APQC的面積為ymm2.
(1)寫出y與x之間的函數(shù)表達式;
(2)當x=2時,求四邊形APQC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x(x﹣3)(0≤x≤3)的圖象,記為C1,它與x軸交于點O,A1;將C1點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;……若P(2020,m)在這個圖象連續(xù)旋轉(zhuǎn)后的所得圖象上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小華同學設計的“作三角形的高線”的尺規(guī)作圖的過程.
已知:如圖1,△ABC.
求作:AB邊上的高線.
作法:如圖2,
①分別以A,C為圓心,大于長
為半徑作弧,兩弧分別交于點D,E;
② 作直線DE,交AC于點F;
③ 以點F為圓心,FA長為半徑作圓,交AB的延長線于點M;
④ 連接CM.
則CM 為所求AB邊上的高線.
根據(jù)上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補全圖2中的圖形;
(2)完成下面的證明:
證明:連接DA,DC,EA,EC,
∵由作圖可知DA=DC =EA=EC,
∴DE是線段AC的垂直平分線.
∴FA=FC .
∴AC是⊙F的直徑.
∴∠AMC=______°(___________________________________)(填依據(jù)),
∴CM⊥AB.
即CM就是AB邊上的高線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等邊三角形,AD⊥BC于點D,點E是直線AD上的動點,將BE繞點B順時針方向旋轉(zhuǎn)60°得到BF,連接EF、CF、AF.
(1)如圖1,當點E在線段AD上時,猜想∠AFC和∠FAC的數(shù)量關(guān)系;(直接寫出結(jié)果)
(2)如圖2,當點E在線段AD的延長線上時,(1)中的結(jié)論還成立嗎?若成立,請證明你的結(jié)論,若不成立,請寫出你的結(jié)論,并證明你的結(jié)論;
(3)點E在直線AD上運動,當△ACF是等腰直角三角形時,請直接寫出∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海中有兩個小島,,某漁船在海中的處測得小島D位于東北方向上,且相距,該漁船自西向東航行一段時間到達點處,此時測得小島恰好在點的正北方向上,且相距,又測得點與小島相距.
(1)求的值;
(2)求小島,之間的距離(計算過程中的數(shù)據(jù)不取近似值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師為了了解班級學生自主學習、合作交流的具體情況,對九(1)班部分學生進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C;一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,李老師一共調(diào)查了 名同學,其中女生共有 名.
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調(diào)查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請求所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com