如圖,有一張一個(gè)角為30°,最小邊長(zhǎng)為2的直角三角形紙片,沿圖中所示的中位線剪開后,將兩部分拼成一個(gè)四邊形,所得四邊形的周長(zhǎng)是
A.8或B.10或C.10或D.8或
D。
由題意可得:AB=2,
∵∠C=30°,∴BC=4,AC=。
∵圖中所示的中位線剪開,

∴CD=AD=,CF=BF=2,DF=1。
如圖1所示:拼成一個(gè)矩形,矩形周長(zhǎng)為:
如圖2所示,可以拼成一個(gè)菱形,周長(zhǎng)為:2+2+2+2=8。
故選D。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”。如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”。其中∠B=∠C。

(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個(gè)頂點(diǎn)引一條直線將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形(畫出一種示意圖即可)。
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請(qǐng)問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(shí)(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),情況又將如何?寫出你的結(jié)論(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABCD是平行四邊形,DE⊥AB,DF⊥BC,垂足分別是E、F,并且DE=DF.求證:

(1)△ADE≌△CDF;
(2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等腰三角形的一邊長(zhǎng)為4,另一邊長(zhǎng)為8,則這個(gè)等腰三角形的周長(zhǎng)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)?jiān)趫D(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合.

(1)畫一個(gè)底邊為4,面積為8的等腰三角形;
(2)畫一個(gè)面積為10的等腰直角三角形;
(3)畫一個(gè)面積為12的平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△AB′C′是由Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到的,連結(jié)CC′交斜邊于點(diǎn)E,CC′的延長(zhǎng)線交BB′于點(diǎn)F。

(1)若AC=3,AB=4,求
(2)證明:△ACE∽△FBE;
(3)設(shè)∠ABC=,∠CAC′=,試探索滿足什么關(guān)系時(shí),△ACE與△FBE是全等三角形,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若等腰三角形兩條邊的長(zhǎng)分別是11cm和23cm,則該三角形的周長(zhǎng)是____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在如下圖的紙片ABCD中,∠B=120°,∠D=50°,如果將其右下角向內(nèi)折出三角形PCR,恰使CP//AB,RC//AD,那么∠C=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠B、∠C的平分線相交于F,過點(diǎn)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是           .

①△BDF、△CEF都是等腰三角形; ②DE=BD+CE;
③BD=CE;        ④△ADE的周長(zhǎng)為AB+AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案