【題目】如圖,六邊形的內(nèi)角都相等,,則下列結論成立的個數(shù)是
① ;②;③;④四邊形是平行四邊形;⑤六邊形 即是中心對稱圖形,又是軸對稱圖形( )
A. B. C. D.
【答案】D
【解析】試題解析:∵六邊形ABCDEF的內(nèi)角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,
∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,
∴AD∥EF∥CB,故②正確,
∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正確,
∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四邊形EFAD,四邊形BCDA是等腰梯形,
∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正確,
連接CF與AD交于點O,連接DF、AC、AE、DB、BE.
∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四邊形AFDC是平行四邊形,故④正確,
同法可證四邊形AEDB是平行四邊形,∴AD與CF,AD與BE互相平分,∴OF=OC,OE=OB,OA=OD,
∴六邊形ABCDEF既是中心對稱圖形,故⑤正確,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,連接對角線BD,作AE⊥BD于E,CF⊥BD于F,
(1)求證:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的頂點A在△ECD的斜邊DE上.
(1)求證:AE2+AD2=2AC2;
(2)如圖2,若AE=3,AC=,點F是AD的中點,求出CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)將一張長方形紙片按如圖1所示的方式折疊,BC、BD為折痕,求∠CBD的度數(shù);
(2)將一張長方形紙片按如圖2所示的方式折疊,BC、BD為折痕,若∠A′BE′=50°,求∠CBD的度數(shù);
(3)將一張長方形紙片按如圖3所示的方式折疊,BC、BD為折痕,若∠A′BE′=α,請直接寫出∠CBD的度數(shù)(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:
已知二次三項式x2﹣4x+m有一個因式是(x+3),求另一個因式以及m的值.
小明發(fā)現(xiàn),可以設另一個因式為(x+n),得
x2﹣4x+m=(x+3)(x+n)
則x2﹣4x+m=x2+(n+3)x+3n
∴
利用方程組可以解決.
請回答:
另一個因式為 ,m的值為 ;
參考小明的方法,解決下面的問題:
已知二次三項式2x2+3x﹣k有一個因式是(x﹣4),求另一個因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABCD的四個內(nèi)角的平分線分別相交于點E、F、G、H,連接AC.若EF=2,FG=GC=5,則AC的長是( 。
A. 12 B. 13 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“端午節(jié)”是中華民族古老的傳統(tǒng)節(jié)日.甲、乙兩家超市在“端午節(jié)”當天對一種原來售價相同的粽子分別推出了不同的優(yōu)惠方案.
甲超市方案:購買該種粽子超過200元后,超出200元的部分按95%收費;
乙超市方案:購買該種粽子超過300元后,超出300元的部分按90%收費.
設某位顧客購買了x元的該種粽子.
(1)補充表格,填寫在“橫線”上:
(2)列式計算說明,如果顧客在“端午節(jié)”當天購買該種粽子超過200元,那么到哪家超市花費更少?
x (單位:元) | 實際在甲超市的花費 (單位:元) | 實際在乙超市的花費 (單位:元) |
0<x≤200 | x | x |
200<x≤300 | x | |
x>300 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1 , y2 , y3的大小關系為( )
A.y3>y1>y2
B.y1>y3>y2
C.y3>y2>y1
D.y1>y2>y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC , OD與AC交于點E.
(1)若∠B=70°,求∠CAD的度數(shù);
(2)若AB=4,AC=3,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com