【題目】進入冬季,空調(diào)再次迎來銷售旺季,某商場用元購進一批空調(diào),該空調(diào)供不應(yīng)求,商家又用元購進第二批這種空調(diào),所購數(shù)量比第一批購進數(shù)量多臺,但單價是第一批的倍.
(1)該商場購進第一批空調(diào)的單價多少元?
(2)若兩批空調(diào)按相同的標(biāo)價出售,春節(jié)將近,還剩下臺空調(diào)未出售,為減少庫存回籠資金,商家決定最后的臺空調(diào)按九折出售,如果兩批空調(diào)全部售完利潤率不低于(不考慮其他因素),那么每臺空調(diào)的標(biāo)價至少多少元?
【答案】(1)該商場購進第一批空調(diào)的單價2500元;(2)每臺空調(diào)的標(biāo)價至少為4000元.
【解析】
(1)設(shè)購進第一批空調(diào)的單價為元,則第二批空調(diào)的單價為元,用總價除以單價分別得到兩批購買的數(shù)量,再根據(jù)第二批比第一批多15臺得到方程求解即可;
(2)設(shè)標(biāo)價為元,用表示出總的銷售額,然后根據(jù)利潤率不低于列出不等式求解.
解:(1)設(shè)購進第一批空調(diào)的單價為元,則第二批空調(diào)的單價為元,
由題意得,
解得,
經(jīng)檢驗,是原方程的解.
答:該商場購進第一批空調(diào)的單價2500元.
(2)設(shè)每臺空調(diào)的標(biāo)價為元,
第二批空調(diào)的單價為元,
第一批空調(diào)的數(shù)量為臺,
第二批空調(diào)的數(shù)量為臺,
由題意得,
解得
答:每臺空調(diào)的標(biāo)價至少為4000元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=8cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向點B運動,同時動點Q從B點出發(fā),以每秒1cm的速度向C點運動,設(shè)P,Q兩點的運動時間為t(0<t<8)秒.
(1)BQ= ,BP= (用含t的式子表示).
(2)當(dāng)t=2時,求△PCQ的面積(提示:在一個三角形中,若兩個角相等,則角所對的邊也相等).
(3)當(dāng)PQ=PC時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3與x軸交于A(﹣3,0)、B(1,0)兩點,與y軸交于點C,連接AC..
(1)請求出拋物線y=ax2+bx+3的解析式;
(2)如圖2,點P、點Q同時從點A出發(fā),點P沿AC以每秒個單位長度的速度,由點A向點C運動;點Q沿AB以每秒2個單位長度的速度,由點A向點B運動;當(dāng)一個點停止運動時,另一個點也隨之停止運動,設(shè)點P的運動時間為t秒,連接PQ.
①求證:PQ⊥AC;
②過點Q作QE⊥x軸,交拋物線于點E,連接PE,當(dāng)PQ=PE時,請求出t的值;
③在y軸上是否存在點D,使以點A、P、Q、D為頂點的四邊形是平行四邊形?若存在,直接寫出D點坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當(dāng)點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平面直角坐標(biāo)系中,A(0,4) ,B (b,0) (-4<b<0),將線段AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,連接BC.
(1)如圖1,直接寫出C點的坐標(biāo): ;(用b表示)
(2)如圖2,取線段BC的中點D,在x軸取一點E使∠DEB=45°,作CF⊥x軸于點F.
①求證:EF=OB;
②如圖3,連接AE,作DH∥y軸交AE于點H,當(dāng)OE=EF時,求線段DH的長度.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PC交AB于點E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點P,且OP=10.在OA上有一點Q,OB上有一點R.若△PQR周長最小,則最小周長是( )
A.10 B.15 C.20 D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,F(xiàn)G∥BC,F(xiàn)H∥AC,下列結(jié)論:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正確的結(jié)論有________________.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com