【題目】如圖,拋物線y=x2﹣2mx+3m與x軸交于A、B兩點,與y軸交于點C(0,﹣3)
(1)求該拋物線的解析式;
(2)點D為該拋物線上的一點、且在第二象限內(nèi),連接AC,若∠DAB=∠ACO,求點D的坐標(biāo);
(3)若點E為線段OC上一動點,試求2AE+EC的最小值.
【答案】(1)y=x2+2x﹣3;(2)點D的坐標(biāo)為(﹣,);(3)4.
【解析】
(1)把點C的坐標(biāo)代入拋物線求出m,即可求出解析式;
(2)過D點作x軸的垂線,交x軸于點H,點D的坐標(biāo)為(n,n 2+2 n﹣3),易知∠DAB =∠ACO ,利用tan∠DAB=tan∠ACO即可求得n的值,即可求出D點坐標(biāo);
(3)根據(jù)B,C坐標(biāo)求出直線BC的解析式為y=-x-3,故∠BCO=45°,則EF=EC,AE+EC=AE+EF,故當(dāng)A、E、F三點共線時,AE+EC最小,即2AE+EC最小,
根據(jù)BC⊥AF可設(shè)直線AF的表達(dá)式為:y=x+b,代入A點即可求出直線AF,令x=0,可求出E點坐標(biāo),即可求出此時2AE+EC的值.
解:(1)把點C的坐標(biāo)代入拋物線表達(dá)式得:9+6m+3m=0,
解得:m=﹣1,
故該拋物線的解析式為:y=x2+2x﹣3;
(2)過D點作x軸的垂線,交x軸于點H,過點E作EF⊥BC,交BC于點F,
令y=0,求得A(1,0),B(-3,0).
設(shè):點D的坐標(biāo)為(n,n 2+2n﹣3),
∵∠DAB=∠ACO,
∴tan∠DAB=tan∠ACO,
即:=,=,
解得:=或1(舍去m=1),
故點D的坐標(biāo)為(,);
(3)根據(jù)B,C坐標(biāo)求出直線BC的解析式為y=-x-3,
過點E作EF⊥BC,交BC于點F,
則EF=EC,AE+EC=AE+EF,
∴當(dāng)A、E、F三點共線時,AE+EC最小,即2AE+EC最小,
設(shè):直線AF的表達(dá)式為:y=x+b,
將點A坐標(biāo)(1,0)代入上式,1+b=0,則b=﹣1,
則直線AE的表達(dá)式為:y=x﹣1,則點E的坐標(biāo)為(0,﹣1),
則EC=3﹣1=2,AE=
2AE+EC=2+2=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是BC的中點,且∠AEC=∠DCE,則下列結(jié)論不正確的是( 。
A. BF=DFB. S△AFD=2S△EFBC. 四邊形AECD是等腰梯形D. ∠AEB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一小島A,它周圍8海里內(nèi)有暗礁,漁船由西向東航行,在B點測得小島A在北偏東60°方向上,航行12海里到達(dá)D點,這時測得小島A在北偏東30°方向上.
(1)求∠BAD的度數(shù);
(2)如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點A,與函數(shù)(x>0)的圖象相交于點B(m,1).
(1)求點B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(x1,y1)、B(x2,y2)都在某函數(shù)圖象上,且當(dāng)x1<x2<0時,y1>y2,則此函數(shù)一定不是( 。
A. B. y=﹣2x+1 C. y=x2﹣1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求H點的坐標(biāo)及k的值;
(2)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標(biāo);
(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當(dāng)△MNQ的面積為3時,請求出所有滿足條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點D在y軸上,以D為圓心,作⊙D交x軸于點E、F,交y軸于點B、G,點A在上,連接AB交x軸于點H,連接 AF并延長到點C,使∠FBC=∠A.
(1)判斷直線BC與⊙D的位置關(guān)系,并說明理由;
(2)求證:BE2=BH·AB;
(3) 若點E坐標(biāo)為(-4,0),點B的坐標(biāo)為(0,-2),AB=8,求F與A兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計.現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學(xué)生共有1200人,試估計該校喜愛看電視的學(xué)生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點,P是⊙O上一動點,求PM的最大值.
問題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對的圓心角為60°.新區(qū)管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進(jìn)行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).
圖① 圖② 圖③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com