【題目】如圖,ABC,AB=BC,ABC=90°,BMAC邊上的中線點(diǎn)D,E分別在邊ACBC,DB=DE,DEBM相交于點(diǎn)N,EFAC于點(diǎn)F,以下結(jié)論:

①∠DBM=CDE;SBDE<S四邊形BMFE;CD·EN=BN·BD;AC=2DF.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題分析:由AB=BC,∠ABC=90°,BMAC邊中線可知△ABC△ABM、△CBM都是等腰直角三角形,因?yàn)?/span>DB=DE,所以對(duì)應(yīng)兩個(gè)底角相等.(1∵∠DEB=∠EDC+∠C=∠EDC+45°(三角形外角性質(zhì)),∴∠EDC=∠DEB-45°,因?yàn)?/span>∠DBE=∠DBM+∠MBE=∠DBM+45°,所以∠DBM=∠DBE-45°,而∠DBE=∠DEB∴∠DBM=∠CDE,故(1)正確.(2)先證明△BDM≌△DEF,∵∠DBM=∠EDF(已證),∠DMB=∠EFD=90°,DB=DE,∴Rt△BDM≌Rt△DEF∴S△BDM=S△DEF∴S△BDM﹣S△DMN=S△DEF﹣S△DMN,即S△DBN=S四邊形MNEF∴S△DBN+S△BNE=S四邊形MNEF+S△BNE,即S△BDE=S四邊形BMFE,故(2)錯(cuò)誤;(3)由所給CDEN=BNBD,化成比例式:CD:BD=BN:EN,所以只要能證明△DBC∽△NEB即可.∵∠BNE=∠DBM+∠BDN(三角形外角性質(zhì)),∠BDM=∠BDE+∠EDF∠EDF=∠DBM,∴∠BNE=∠BDM.即∠BNE=∠BDC,又∵∠C=∠NBE=45°∴△DBC∽△NEB對(duì)應(yīng)線段成比例CD:BD=BN:EN,化成乘積式即得CDEN=BNBD,故(3)正確;(4)把所給線段進(jìn)行轉(zhuǎn)換:∵Rt△BDM≌Rt△DEF,∴BM=DF∵BM是等腰直角三角形ABC斜邊AC中線,∴BM=AC∴DF=AC,∴AC=2DF.故(4)正確.綜上所述,選項(xiàng)中有三個(gè)正確,故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD,過(guò)點(diǎn)AAEBC垂足為E,連接DE,F為線段DE上一點(diǎn)AFE=∠B

(1)求證ADF∽△DEC;

(2)若AB=8,AD=,AF=,AE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:

(1)仔細(xì)觀察,在圖2中有 個(gè)以線段AC為邊的“8字形”;

(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù).

(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說(shuō)明理由;

(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).

1)畫出ABCAB邊上的中線CD;

2)畫出ABC向右平移4個(gè)單位后得到的A1B1C1;

3)圖中ACA1C1的關(guān)系是:   

4)圖中,能使SABQ=SABC的格點(diǎn)Q(點(diǎn)Q不與點(diǎn)C重合),共有   個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)OOE把∠BOD分成兩部分.

(1)圖中∠AOC的對(duì)頂角為________,BOE的補(bǔ)角為________;

(2)若∠AOC75°,且∠BOE∶∠EOD14,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A一個(gè)游戲的中獎(jiǎng)概率是,則做10次這樣的游戲一定會(huì)中獎(jiǎng)

B為了解全國(guó)中學(xué)生的心理健康情況,應(yīng)該采用普查的方式

C一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8

D若甲組數(shù)據(jù)的方差S2=001,乙組數(shù)據(jù)的方差S2=01,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)ykx的圖象與反比例函數(shù)的圖象有一個(gè)交點(diǎn)為A(m,2)

(1)m的值及正比例函數(shù)ykx的表達(dá)式;

(2)試判斷點(diǎn)B(2,3)是否在正比例函數(shù)圖象上,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案