【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc0;②2ab0;③4a2b+c0;④(a+c2b2其中正確的個(gè)數(shù)有(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

試題拋物線開口向下,∴a0,拋物線的對(duì)稱軸在y軸的左側(cè),∴x=0,∴b0

拋物線與y軸的交點(diǎn)在x軸上方,∴c0,∴abc0,(故正確);

∵﹣10∴2a﹣b0,(故正確);

當(dāng)x=﹣2時(shí),y0,∴4a﹣2b+c0,(故正確);

當(dāng)x=﹣1時(shí),y0∴a﹣b+c0,

當(dāng)x=1時(shí),y0,∴a+b+c0,

a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0,a+c2﹣b20,(故正確).

綜上所述,正確的個(gè)數(shù)有4個(gè).故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是四邊形ABCD的對(duì)角線,ADBC,ADBC,∠ABD=∠DBCDEABE

1)求證:CDCB;

2)若AB5BD6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸和y軸分別交于A、B兩點(diǎn).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O作勻速運(yùn)動(dòng),到達(dá)點(diǎn)O即停止運(yùn)動(dòng).其中A、Q兩點(diǎn)關(guān)于點(diǎn)P對(duì)稱,以線段PQ為邊向上作正方形PQMN.設(shè)運(yùn)動(dòng)時(shí)間為秒.如圖①.

1)當(dāng)t=2秒時(shí),OQ的長(zhǎng)度為     ;

2)設(shè)MN、PN分別與直線yx+4交于點(diǎn)C、D,求證:MC=NC;

3)在運(yùn)動(dòng)過程中,設(shè)正方形PQMN的對(duì)角線交于點(diǎn)E,MPQD交于點(diǎn)F,如圖2,求OF+EN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形中,分別是的中點(diǎn),連接,則的周長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)CCE∥BD,過點(diǎn)DDE∥AC,CEDE相交于點(diǎn)E

1)求證:四邊形CODE是矩形.

2)若AB=5AC=6,求四邊形CODE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,∠ADC=120°,ADAB,EF分別是ABCD的中點(diǎn),過點(diǎn)AAGBD,交CB的延長(zhǎng)線于點(diǎn)G

1)求證:DE=BE;

2)請(qǐng)判斷四邊形AGBD是什么特殊的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)0,),34).

1)求拋物線的表達(dá)式及對(duì)稱軸;

2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),記拋物線在,之間的部分為圖象(包含兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的邊長(zhǎng)為2,點(diǎn)A在第一象限,點(diǎn)C在x軸正半軸上,AOC=60°,若將菱形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BEEF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

同步練習(xí)冊(cè)答案