【題目】如圖,菱形中,分別是的中點(diǎn),連接,則的周長為(

A.B.C.D.

【答案】D

【解析】

首先根據(jù)菱形的性質(zhì)證明ABE≌△ADF,然后連接AC可推出ABC以及ACD為等邊三角形.根據(jù)等邊三角形三線合一的性質(zhì)又可推出AEF是等邊三角形.根據(jù)勾股定理可求出AE的長,繼而求出周長.

解:∵四邊形ABCD是菱形,

ABADBCCD2cm,∠B=∠D,

E、F分別是BCCD的中點(diǎn),

BEDF,

ABEADF中,,

∴△ABE≌△ADFSAS),

AEAF,∠BAE=∠DAF

連接AC,

∵∠B=∠D60°,

∴△ABCACD是等邊三角形,

AEBC,AFCD

∴∠BAE=∠DAF30°,

∴∠EAF60°BE=AB=1cm,

∴△AEF是等邊三角形,AE,

∴周長是

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P﹣3,1),對(duì)稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.

(1)求m,n的值.

(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.

(3)直接寫出y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,OAB的面積是2

1)求線段OB的中點(diǎn)C的坐標(biāo).

2)連結(jié)AC,過點(diǎn)OOEACE,交AB于點(diǎn)D

直接寫出點(diǎn)E的坐標(biāo).

連結(jié)CD,求證:ECO=DCB;

3)點(diǎn)Px軸上一動(dòng)點(diǎn),點(diǎn)Q為平面內(nèi)一點(diǎn),以點(diǎn)A.C.P.Q為頂點(diǎn)作菱形,直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lyx與直線ly=kx+b相交于點(diǎn)Aa,3),直線交ly軸于點(diǎn)B0,﹣5).

1)求直線l的解析式;

2)將△OAB沿直線l翻折得到△CAB(其中點(diǎn)O的對(duì)應(yīng)點(diǎn)為點(diǎn)C),求證:ACOB;

3)在直線BC下方以BC為邊作等腰直角三角形BCP,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象經(jīng)過點(diǎn)(x1,0)、(2,0),且﹣2x1﹣1,與y軸正半軸的交點(diǎn)在(0,2)的下方,則下列結(jié)論:

①abc0;②b24ac;③2a+b+10;④2a+c0

則其中正確結(jié)論的序號(hào)是

A. ①② B. ②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc0;②2ab0;③4a2b+c0;④(a+c2b2其中正確的個(gè)數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC中,BO平分∠ABC,CO平分∠ACB

1)如圖1,∠BOC和∠A有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由

2)如圖2,過O點(diǎn)的直線分別交ABC的邊AB、ACEF(點(diǎn)E不與A,B重合,點(diǎn)F不與A、C重合),BP平分外角∠DBC,CP平分外角∠GCBBP,CP相交于P.求證:∠P=∠BOE+COF;

3)如果(2)中過O點(diǎn)的直線與AB交于E(點(diǎn)E不與AB重合),與CA的延長線交于F在其它條件不變的情況下,請(qǐng)直接寫出∠P、∠BOE、∠COF三個(gè)角之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)傳統(tǒng)文化進(jìn)校園活動(dòng),某校準(zhǔn)備成立經(jīng)典誦讀傳統(tǒng)禮儀、民族器樂地方戲曲等四個(gè)課外活動(dòng)小組.學(xué)生報(bào)名情況如圖(每人只能選擇一個(gè)小組):

1)報(bào)名參加課外活動(dòng)小組的學(xué)生共有 人,將條形圖補(bǔ)充完整;

2)扇形圖中m= n=

3)根據(jù)報(bào)名情況,學(xué)校決定從報(bào)名經(jīng)典誦讀小組的甲、乙、丙、丁四人中隨機(jī)安排兩人到地方戲曲小組,甲、乙恰好都被安排到地方戲曲小組的概率是多少?請(qǐng)用列表或畫樹狀圖的方法說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案