【題目】如圖,菱形中,分別是的中點(diǎn),連接,則的周長為( )
A.B.C.D.
【答案】D
【解析】
首先根據(jù)菱形的性質(zhì)證明△ABE≌△ADF,然后連接AC可推出△ABC以及△ACD為等邊三角形.根據(jù)等邊三角形三線合一的性質(zhì)又可推出△AEF是等邊三角形.根據(jù)勾股定理可求出AE的長,繼而求出周長.
解:∵四邊形ABCD是菱形,
∴AB=AD=BC=CD=2cm,∠B=∠D,
∵E、F分別是BC、CD的中點(diǎn),
∴BE=DF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,∠BAE=∠DAF.
連接AC,
∵∠B=∠D=60°,
∴△ABC與△ACD是等邊三角形,
∴AE⊥BC,AF⊥CD,
∴∠BAE=∠DAF=30°,
∴∠EAF=60°,BE=AB=1cm,
∴△AEF是等邊三角形,AE=,
∴周長是.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對(duì)稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,△OAB的面積是2.
(1)求線段OB的中點(diǎn)C的坐標(biāo).
(2)連結(jié)AC,過點(diǎn)O作OE⊥AC于E,交AB于點(diǎn)D.
①直接寫出點(diǎn)E的坐標(biāo).
②連結(jié)CD,求證:∠ECO=∠DCB;
(3)點(diǎn)P為x軸上一動(dòng)點(diǎn),點(diǎn)Q為平面內(nèi)一點(diǎn),以點(diǎn)A.C.P.Q為頂點(diǎn)作菱形,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:yx與直線l:y=kx+b相交于點(diǎn)A(a,3),直線交l交y軸于點(diǎn)B(0,﹣5).
(1)求直線l的解析式;
(2)將△OAB沿直線l翻折得到△CAB(其中點(diǎn)O的對(duì)應(yīng)點(diǎn)為點(diǎn)C),求證:AC∥OB;
(3)在直線BC下方以BC為邊作等腰直角三角形BCP,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(x1,0)、(2,0),且﹣2<x1<﹣1,與y軸正半軸的交點(diǎn)在(0,2)的下方,則下列結(jié)論:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
則其中正確結(jié)論的序號(hào)是
A. ①② B. ②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正確的個(gè)數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,BO平分∠ABC,CO平分∠ACB
(1)如圖1,∠BOC和∠A有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由
(2)如圖2,過O點(diǎn)的直線分別交△ABC的邊AB、AC于E、F(點(diǎn)E不與A,B重合,點(diǎn)F不與A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求證:∠P=∠BOE+∠COF;
(3)如果(2)中過O點(diǎn)的直線與AB交于E(點(diǎn)E不與A、B重合),與CA的延長線交于F在其它條件不變的情況下,請(qǐng)直接寫出∠P、∠BOE、∠COF三個(gè)角之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動(dòng),某校準(zhǔn)備成立“經(jīng)典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個(gè)課外活動(dòng)小組.學(xué)生報(bào)名情況如圖(每人只能選擇一個(gè)小組):
(1)報(bào)名參加課外活動(dòng)小組的學(xué)生共有 人,將條形圖補(bǔ)充完整;
(2)扇形圖中m= ,n= ;
(3)根據(jù)報(bào)名情況,學(xué)校決定從報(bào)名“經(jīng)典誦讀”小組的甲、乙、丙、丁四人中隨機(jī)安排兩人到“地方戲曲”小組,甲、乙恰好都被安排到“地方戲曲”小組的概率是多少?請(qǐng)用列表或畫樹狀圖的方法說明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com