【題目】如圖,等腰中,,于.的平分線分別交,于點(diǎn),兩點(diǎn),為的中點(diǎn),延長(zhǎng)交于點(diǎn),連接.下列結(jié)論:①;②;③是等腰三角形;④.其中正確的結(jié)論個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,證△DFB≌△DAN,即可判斷①,證△ABF≌△CAN,推出CN=AF=AE,即可判斷②;根據(jù)A、B、D、M四點(diǎn)共圓求出∠ADM=22.5°,即可判斷④,根據(jù)三角形外角性質(zhì)求出∠DNM,求出∠MDN=∠DNM,即可判斷③.
∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,
∵M為EF的中點(diǎn),
∴AM⊥BE,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中
∴△FBD≌△NAD,
∴DF=DN,∴①正確;
在△AFB和△△CNA中
∴△AFB≌△CAN,
∴AF=CN,
∵AF=AE,
∴AE=CN,∴②正確;
∴A、B、D、M四點(diǎn)共圓,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正確;
∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,
∴∠MDN=180°-45°-67.5°=67.5°=∠DNM,
∴DM=MN,∴△DMN是等腰三角形,∴③正確;
即正確的有4個(gè),
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠ACB=90°,直線l過(guò)點(diǎn)C.
(1)當(dāng)AC=BC時(shí),如圖1,分別過(guò)點(diǎn)A和B作AD⊥直線l于點(diǎn)D,BE⊥直線l于點(diǎn) E.△ACD與△CBE是否全等,并說(shuō)明理由;
(2)當(dāng)AC=9cm,BC=6cm時(shí),如圖2,點(diǎn)B與點(diǎn)F關(guān)于直線l對(duì)稱,連接BF、CF,點(diǎn)M在AC上,點(diǎn)N是CF上一點(diǎn),分別過(guò)點(diǎn)M、N作MD⊥直線l于點(diǎn)D,NE⊥直線l于點(diǎn)E,點(diǎn)M從A點(diǎn)出發(fā),以每秒1cm的速度沿A→C路徑運(yùn)動(dòng),終點(diǎn)為C,點(diǎn)N從點(diǎn)F出發(fā),以每秒3cm的速度沿F→C→B→C→F路徑運(yùn)動(dòng),終點(diǎn)為F,點(diǎn)M、N同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)△CMN為等腰直角三角形時(shí),求t的值;
②當(dāng)△MDC與△CEN全等時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在中,,,點(diǎn)為的中點(diǎn).
(1)如圖1,求的度數(shù);
(2)如圖2,點(diǎn)為上一點(diǎn),連接并延長(zhǎng)至點(diǎn),連接,過(guò)點(diǎn)作,垂足為點(diǎn),若,探究與之間的數(shù)量關(guān)系,并加以證明;
(3)如圖3,在(2)的條件下,在上取點(diǎn),連接,使得,將線段沿著折疊并延長(zhǎng)交于點(diǎn),當(dāng),時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,.設(shè)的面積為.
①圖1中,為中點(diǎn),,,,是上的四點(diǎn);
②圖2中,,,,,,,交于點(diǎn);
③圖3中,,D為中點(diǎn),.
其中,陰影部分面積為的是______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠BAE=105°,AE的垂直平分線MN交BE于點(diǎn)C,且AB=CE,則∠B的度數(shù)是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開展以“我最喜愛的傳統(tǒng)文化種類”為主題的調(diào)查活動(dòng),圍繞“在詩(shī)詞、國(guó)畫、對(duì)聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)”的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若軍寧中學(xué)共有960名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛國(guó)畫的學(xué)生有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com