【題目】如圖,在△ABC中,AD是BC邊上的中線,點E、F在AB邊上,連接DE,CF交AD于G,點E是BF中點.
(1)求證:△AFG∽△AED
(2)若FG=2,G為AD中點,求CG的長.
【答案】(1)見解析;(2)6
【解析】
試題分析:(1)根據(jù)AD是BC邊上的中線,點E是BF中點,得到BD=CD,BE=EF,根據(jù)三角形的中位線的性質(zhì)得到DE∥CF,即可得到結(jié)論;
(2)由G為AD中點,F(xiàn)G∥DE,得到AF=EF,求得DE=2FG=4,根據(jù)三角形的中位線的性質(zhì)得到CF=2DE=8,即可得到結(jié)論.
(1)證明:∵AD是BC邊上的中線,點E是BF中點,
∴BD=CD,BE=EF,
∴DE是△BCF的中位線,
∴DE∥CF,
∴DE∥FG,
∴△AFG∽△AED;
(2)解:∵G為AD中點,F(xiàn)G∥DE,
∴AF=EF,
∴FG是△ADE的中位線,
∴DE=2FG=4,
∴CF=2DE=8,
∴CG=FC﹣FG=8﹣2=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E,F分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點B,C分別落在B′,C′處,線段EC′與線段AF交于點G,連接DG,B′G.
求證:(1)∠1=∠2;
(2)DG=B′G.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E、F、G、H分別在菱形ABCD的四條邊上,BE=BF=DG=DH,連接EF,F(xiàn)G,GH,HE,得到四邊形EFGH,若AB=a,∠A=60°,當四邊形
EFGH的面積取得最大時,BE的長度為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長8cm,底邊BC長10cm,設(shè)DG=xcm,DE=ycm,
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當x為何值時,四邊形DEFG的面積最大?最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com