【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫(huà)出A1B1C1A2B2C2;

(1)O為位似中心,在點(diǎn)O的同側(cè)作A1B1C1,使得它與原三角形的位似比為12;

(2)ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到A2B2C2,并求出點(diǎn)A旋轉(zhuǎn)的路徑的長(zhǎng).

【答案】1)見(jiàn)解析;(2π.

【解析】

1)連接三角形各頂點(diǎn)與位似中心得線段AO,BO,CO,再將其減半,可得A1,B1,C1點(diǎn),再連接各點(diǎn)即得△A1B1C1,(2)將連接的線段AO,BOCO,繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到A2O,B2O,C2O,再連接各點(diǎn)即可,根據(jù)方格求出OA的長(zhǎng),再利用弧長(zhǎng)公式求出A旋轉(zhuǎn)的路徑的長(zhǎng).

解 (1)如圖所示:

(2)如圖所示:

OA,

∴點(diǎn)A運(yùn)動(dòng)的路徑為弧AA2的長(zhǎng)=π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶(hù)能夠開(kāi)啟和關(guān)閉的連桿式活動(dòng)鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點(diǎn)BC、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點(diǎn)C,D之間的距離是10厘米,張角∠CAB60°.

(1)求支點(diǎn)D到滑軌MN的距離(精確到1厘米)

(2)將滑塊A向左側(cè)移動(dòng)到A′,(在移動(dòng)過(guò)程中,托臂長(zhǎng)度不變,即ACAC′,BCBC)當(dāng)張角∠CA'B45°時(shí),求滑塊A向左側(cè)移動(dòng)的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.732.45,2.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:選用同一長(zhǎng)度單位量得兩條線段的長(zhǎng)度分別是,,那么就說(shuō)兩條線段的比

,如果把表示成比值,那么,或.請(qǐng)完成以下問(wèn)題:

四條線段,,中,如果________,那么這四條線段,,叫做成比例線段.

已知,那么________,________

如果,那么成立嗎?請(qǐng)用兩種方法說(shuō)明其中的理由.

如果,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,給定銳角三角形ABC,小明希望畫(huà)正方形DEFG,使D,E位于邊BC上,F,G分別位于邊ACAB上,他發(fā)現(xiàn)直接畫(huà)圖比較困難,于是他先畫(huà)了一個(gè)正方形HIJK,使得點(diǎn)H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時(shí)他發(fā)現(xiàn)可以將正方形HIJK通過(guò)放大或縮小得到滿(mǎn)足要求的正方形DEFG.

閱讀以上材料,回答小明接下來(lái)研究的以下問(wèn)題:

(1)如圖2,給定銳角三角形ABC,畫(huà)出所有長(zhǎng)寬比為21的長(zhǎng)方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上.

(2)已知三角形ABC的面積為36,BC12,在第(1)問(wèn)的條件下,求長(zhǎng)方形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°BC16 cm,AC12 cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC2 cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1 cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)PQ分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t__________時(shí),CPQCBA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖12,3,根據(jù)圖中數(shù)據(jù)完成填空,再按要求答題:sin2A1sin2B1=____sin2A2sin2B2=____;sin2A3sin2B3=____.

(1)觀察上述等式,猜想:在RtABC中,∠C=90°,都有sin2Asin2B=____;

(2)如圖4,在RtABC中,∠C=90°,∠A,∠B,∠C的對(duì)邊分別是a,b,c,利用三角函數(shù)的定義和勾股定理證明你的猜想;

(3)已知∠A+∠B=90°,且sinA=,求sinB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)E,BAC=90°,CED=45°,DCE=30°,DE=,BE=.求CD的長(zhǎng)和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E為CD的中點(diǎn),AE的垂直平分線分別交AD,BC及AB的延長(zhǎng)線于點(diǎn)F,G,H,連接HE,HC,OD,連接CO并延長(zhǎng)交AD于點(diǎn)M.則下列結(jié)論中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正確結(jié)論的個(gè)數(shù)有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了提高學(xué)生的消防意識(shí),舉行了消防知識(shí)競(jìng)賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問(wèn)題:

1)這次知識(shí)競(jìng)賽共有多少名學(xué)生?

2)“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)小華參加了此次的知識(shí)競(jìng)賽,請(qǐng)你幫他求出獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案