【題目】如圖,在平行四邊形ABCD中,AB=10,BC=15,tan∠A=點(diǎn)P為AD邊上任意一點(diǎn),連結(jié)PB,將PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PQ.若點(diǎn)Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉(zhuǎn)到PQ所掃過的面積____(結(jié)果保留π)
【答案】或或
【解析】
分三種情況:點(diǎn)Q在直線AD上,點(diǎn)Q在直線CD上和點(diǎn)Q在直線BC上,分別求出PB的長(zhǎng)度,然后利用扇形的面積公式即可求解.
①當(dāng)點(diǎn)Q在直線AD上時(shí),此時(shí),如圖,
,
.
∵,
.
,
,
∴PB旋轉(zhuǎn)到PQ所掃過的面積為 ;
②當(dāng)點(diǎn)Q在直線CD上時(shí),此時(shí),如圖,
過點(diǎn)B作交AD于點(diǎn)E,過點(diǎn)Q作交AD的延長(zhǎng)線于點(diǎn)F,
∵四邊形ABCD是平行四邊形,
∴ ,
.
,
.
,
.
在和中,
,
.
由①知, ,
設(shè),
則.
,
,
解得 ,
,
,
∴PB旋轉(zhuǎn)到PQ所掃過的面積為 ;
③當(dāng)點(diǎn)Q在直線BC上時(shí),此時(shí),如圖,
過點(diǎn)B作交AD于點(diǎn)E,過點(diǎn)P作交BC于點(diǎn)H,
∵四邊形ABCD是平行四邊形,
∴.
∵,,
,
∴四邊形BGPH是平行四邊形.
∵ ,
∴四邊形BGPH是矩形,
∴ .
,
,
,
∴PB旋轉(zhuǎn)到PQ所掃過的面積為 ;
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對(duì)稱軸為直線x=﹣1,與x軸的交點(diǎn)為(x1,0)、(x2,0),其中0<x2<1,有下列結(jié)論:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④當(dāng)m為任意實(shí)數(shù)時(shí),a﹣b≤am2+bm;⑤3a+c=0.其中,正確的結(jié)論有( )
A.②③④B.①③⑤C.②④⑤D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的直角邊在x軸上,在y軸的正半軸上,且,,按以下步驟作圖:①以點(diǎn)A為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交,于點(diǎn)C,D;②分別以C,D為圓心,大于的長(zhǎng)為半徑作弧,兩弧在內(nèi)交于點(diǎn)M;③作射線,交y軸于點(diǎn)E,則點(diǎn)E的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹木2棵,B種樹木5棵,共需600元;購(gòu)買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購(gòu)買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,OB⊥CD交⊙O于點(diǎn)B,連接CB,AB是⊙O的弦,AB交CD于點(diǎn)E,F是CD的延長(zhǎng)線上一點(diǎn)且AF=EF.
(1)判斷AF和⊙O的位置關(guān)系并說明理由.
(2)若∠ABC=60°,BC=1cm,求陰影部分的面積.(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=5,BC=4,E是BC邊上一點(diǎn),連接DE,將矩形ABCD沿DE折疊,頂點(diǎn)C恰好落在AB邊上點(diǎn)F處,延長(zhǎng)DE交AB的延長(zhǎng)線于點(diǎn)G.
(1)求線段BE的長(zhǎng);
(2)連接CG,求證:四邊形CDFG是菱形;
(3)如圖2,P,Q分別是線段DG,CG上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠CPQ=∠CDP,是否存在這樣的點(diǎn)P,使△CPQ是等腰三角形?若存在,請(qǐng)直接寫出DP的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點(diǎn)C,連接AC,OD交于點(diǎn)E.
(1)證明:OD∥BC;
(2)若tan∠ABC=2,證明:DA與⊙O相切;
(3)在(2)條件下,連接BD交于⊙O于點(diǎn)F,連接EF,若BC=1,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊形如母子正方形的板材,木工師傅想先把它分割成幾塊,然后適當(dāng)拼接,制成某種特殊形狀的板面(要求板材不能有剩余,拼接時(shí)不重疊、無空隙),請(qǐng)你按下列要求,幫助木工師傅分別設(shè)計(jì)一種方案:
(1)板面形狀為非正方形的中心對(duì)稱圖形;
(2)板面形狀為等腰梯形;
(3)板面形狀為正方形.
請(qǐng)?jiān)诜礁窦堉械膱D形上畫出分割線,在相應(yīng)的下邊的方格紙上面畫出拼接后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,C90,點(diǎn)D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,與邊BC交于點(diǎn)F,過點(diǎn)E作EHAB于點(diǎn)H,連結(jié)BE.
(1)求證:BCBH;
(2)若AB5,AC4,求CE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com