如圖,PA為⊙O的切線,A為切點(diǎn),PO交⊙O于點(diǎn)B,PA=8,OA=6,則tan∠APO的值為(  )
A.
3
4
B.
3
5
C.
4
5
D.
4
3

∵PA是⊙O的切線,
∴OA⊥AP.
又∵PA=8,OA=6,
∴在Rt△OAP中有,tan∠APO=
OA
PA
=
3
4

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交X軸于D點(diǎn),過D點(diǎn)作DF⊥AE于F.
(1)求OA和OC的長;
(2)求證:OE=AE;
(3)求證:DF是⊙O′的切線;
(4)在邊BC上是否存在除E點(diǎn)以外的P點(diǎn),使△AOP是等腰三角形?如果存在,請寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

⊙O的半徑為6cm,弦AB的長為6
3
cm
,以O(shè)為圓心,3cm長為半徑作圓,與弦AB有______個(gè)公共交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個(gè)半圓的圓心.F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個(gè)半圓圓弧的中點(diǎn).
(1)連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)如圖二,過點(diǎn)A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點(diǎn)P和點(diǎn)Q,連接PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;
(3)如圖三,過點(diǎn)A作半圓O2的切線,交CE的延長線于點(diǎn)Q,過點(diǎn)Q作直線FA的垂線,交BD的延長線于點(diǎn)P,連接PA.證明:PA是半圓O1的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,DB長為半徑作⊙D
(1)試判斷直線AC與⊙D的位置關(guān)系,并說明理由;
(2)若點(diǎn)E在AB上,且DE=DC,當(dāng)AB=3,AC=5時(shí),求線段AE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O的直徑等于12cm,圓心O到直線l的距離為5cm,則直線l與⊙O的交點(diǎn)個(gè)數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)A從點(diǎn)(1,0)出發(fā)以每秒1個(gè)單位長度的速度沿x軸向右運(yùn)動(dòng),在運(yùn)動(dòng)過程中,以O(shè)A為一邊作菱形OABC,使B、C在第一象限,且∠AOC=60°,連接AC、OB;同時(shí)點(diǎn)M從原點(diǎn)O出發(fā),以每秒
3
個(gè)單位長度的速度沿對角線OB向點(diǎn)B運(yùn)動(dòng),若以點(diǎn)M為圓心,MA的長為半徑畫圓,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1時(shí),判斷點(diǎn)O與⊙M的位置關(guān)系,并說明理由.
(2)當(dāng)⊙M與OC邊相切時(shí),求t的值.
(3)隨著t的變化,⊙M和菱形OABC四邊的公共點(diǎn)個(gè)數(shù)也在變化,請直接寫出公共點(diǎn)個(gè)數(shù)與t的大小之間的對應(yīng)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直角梯形ABCD中,ADBC,∠B=90°,AD+BC>DC,若腰DC上有點(diǎn)P,使AP⊥BP,則這樣的點(diǎn)( 。
A.不存在B.只有一個(gè)C.只有兩個(gè)D.有無數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(5二二9•朝陽)如圖,⊙O是Rt△6BC的外接圓,點(diǎn)O在6B上,BD⊥6B,點(diǎn)B是垂足,OD6C,連接CD.
求證:CD是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案