【題目】如圖,中,∠ACB=90°,∠B=22.5°,的垂直平分線交于,則下列結(jié)論不正確的是()
A. B.
C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任何一個有理數(shù)都能寫成分?jǐn)?shù)的形式(整數(shù)可以看作是分母為1的分?jǐn)?shù)).我們知道:0.12可以寫,0.123可以寫成,因此,有限小數(shù)是有理數(shù)那么無限循環(huán)小數(shù)是有理數(shù)嗎?下面以循環(huán)小數(shù)2.61545454…= 為例,進(jìn)行探索:
設(shè)x=,①
兩邊同乘以100得:100x=,②
②-①得:99x=261.54-=258.93,
∴x=
因此, 是有理數(shù).
(1)直接用分?jǐn)?shù)表示循環(huán)小數(shù)=______.
(2)試說明 是一個有理數(shù),即能用一個分?jǐn)?shù)表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動2cm到達(dá)A點(diǎn),再向左移動3cm到達(dá)B點(diǎn),然后向右移動9cm到達(dá)C點(diǎn)。
(1)用1個單位長度表示1cm,請你在數(shù)軸上表示出A. B. C三點(diǎn)的位置;
(2)把點(diǎn)C到點(diǎn)A的距離記為CA,則CA=______cm.
(3)若點(diǎn)B以每秒2cm的速度向左移動,同時A. C點(diǎn)分別以每秒1cm、4cm的速度向右移動。設(shè)移動時間為t秒,試探索:CAAB的值是否會隨著t的變化而改變?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.
(1)若∠C=40°,求∠BAD的度數(shù);
(2)若AC=5,DC=4,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把自然數(shù)按圖的次序排在直角坐標(biāo)系中,每個自然數(shù)都對應(yīng)著一個坐標(biāo).如1的對應(yīng)點(diǎn)是原點(diǎn)(0,0),3的對應(yīng)點(diǎn)是(1,1),16的對應(yīng)點(diǎn)是(-1,2),那么,2019的對應(yīng)點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】CD是線段AB的垂直平分線,則∠CAD=∠CBD.請說明理由.
解:∵CD是線段AB的垂直平分線(已知),
∴AC=______,______=BD(______)
在△ADC和______中,
______=BC,
AD=______,
CD=______(______),
∴______≌______(______ 。
∴∠CAD=∠CBD (全等三角形的對應(yīng)角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)因式分解:-28m3n2+42m2n3-14m2n
(2)因式分解:9a2(x-y)+4b2(y-x)
(3)求不等式的負(fù)整數(shù)解
(4)解不等式組,把它們的解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com