【題目】某班數(shù)學(xué)興趣小組為了測(cè)量建筑物AB的高度,他們選取了地面上一點(diǎn)E,測(cè)得DE的長(zhǎng)度為8.65米,并以建筑物CD的頂端點(diǎn)C為觀測(cè)點(diǎn),測(cè)得點(diǎn)A的仰角為45°,點(diǎn)B的俯角為37°,點(diǎn)E的俯角為30°.
(1)求建筑物CD的高度;
(2)求建筑物AB的高度.
(參考數(shù)據(jù):≈1.73,sin37°≈,cos37°≈,tan37°≈)
【答案】建筑物AB的高度約為11.67米
【解析】
試題分析:(1)由在Rt△CDE中,tan∠CED=,DE=8.65,∠CED=30°,即可求得答案;
(2)首先過點(diǎn)C作CF⊥AB于點(diǎn)F,然后在Rt△CBF中,求得FC,在Rt△AFC中,求得AF,繼而求得答案.
試題解析:(1)在Rt△CDE中,tan∠CED=,DE=8.65,∠CED=30°,
∴tan30°=,
解得:DC≈=5,
∴建筑物CD的高度約為5米;
(2)過點(diǎn)C作CF⊥AB于點(diǎn)F.
在Rt△CBF中,tan∠FCB=,BF=DC=5,∠FCB=37°,
∴tan37°=≈,F(xiàn)C≈6.67,
在Rt△AFC中,∵∠ACF=45°,
∴AF=CF=6.67,
∴AB=AF+BF≈11.67,
∴建筑物AB的高度約為11.67米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公司計(jì)劃用32m長(zhǎng)的材料沿墻建造的長(zhǎng)方形倉庫,倉庫的一邊靠墻,已知墻長(zhǎng)16m,設(shè)長(zhǎng)方形的寬AB為xm.
(1)用x的代數(shù)式表示長(zhǎng)方形的長(zhǎng)BC;
(2)能否建造成面積為120㎡的長(zhǎng)方形倉庫?若能,求出長(zhǎng)方形倉庫的長(zhǎng)和寬;若不能,請(qǐng)說明理由;
(3)能否建造成面積為160㎡的長(zhǎng)方形倉庫?若能,求出長(zhǎng)方形倉庫的長(zhǎng)和寬;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為:y=-3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有()
⑴不存在絕對(duì)值最小的無理數(shù)⑵不存在絕對(duì)值最小的實(shí)數(shù)
⑶不存在與本身的算術(shù)平方根相等的數(shù)⑷比正實(shí)數(shù)小的數(shù)都是負(fù)實(shí)數(shù)
⑸非負(fù)實(shí)數(shù)中最小的數(shù)是0
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB=10,C是AB的中點(diǎn).
(1)求線段BC的長(zhǎng);
(2)若點(diǎn)D在直線AB上,DB=2.5,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,過點(diǎn)A作AE⊥CD,交CD的延長(zhǎng)線于點(diǎn)E,DA平分∠BDE.
1)求證:AE是⊙O的切線;
(2)已知AE=8cm,CD=12cm,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com