【題目】如圖,在平面直角坐標(biāo)系中,把二元一次方程的若干個解用點表示出來,發(fā)現(xiàn)它們都落在同一條直線上.一般地,任何一個二元一次方程的所有解用點表示出來,它的圖象就是一條直線.根據(jù)這個結(jié)論,解決下列問題:
(1)根據(jù)圖象判斷二元一次方程的正整數(shù)解為 ;(寫出所有正整數(shù)解)
(2)若在直線上取一點(,),先向下平移個單位長度,再向右平移個單位長度得到點M′,發(fā)現(xiàn)點M′又重新落在二元一次方程的圖象上,試探究,之間滿足的數(shù)量關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求出下列x的值:
(1)4x2﹣81=0; (2)64(x+1)3=27;
(3)-(x-3)3=27 (4)9(3x+2)2-64=0;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點,點D為線段AB上一動點,過點D作CD⊥x軸于點C,交拋物線于點E.
(1)求拋物線的解析式.
(2)求△ABE面積的最大值.
(3)連接BE,是否存在點D,使得△DBE和△DAC相似?若存在,求出點D坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù)。例如:M{1,0,2}= ;min{1,0,2}=1;min{1,0,a}= .如果M{2,x+1,2x}=min{2,x+1,2x},則x的值是( )
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
如圖,∠C=50°,E是BA延長線上的一點,過點A作//BC﹒若AD平分∠CAE,求∠B的度數(shù).
解:∵//BC,∠C=50°( 已知 ),
∴∠2= = °( ).
又∵AD平分∠CAE( 已知 ),
∴ =∠2=50°( ).
又∵//BC(已知),
∴∠B= = °( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列判斷錯誤的是( )
A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD
C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,CD⊥DA,DA⊥AB,∠1=∠2.試確定射線DF與AE的位置關(guān)系,并說明你的理由.
(1)問題的結(jié)論:DF______AE.
(2)證明思路欲證DF______AE,只要證∠3=______.
(3)證明過程:
證明:∵CD⊥DA,DA⊥AB,( )
∴∠CDA=∠DAB=______°(垂直定義)
∵∠1=∠2,( )
∴∠CDA-∠1=______-______,(等式的性質(zhì))
即∠3=______
∴DF______AE( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿y軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設(shè)移動時間為t秒.
(1)當(dāng)t=2時,則AP= ,此時點P的坐標(biāo)是 。
(2)當(dāng)t=3時,求過點P的直線l:y=-x+b的解析式?
(3)當(dāng)直線l:y=-x+b從經(jīng)過點M到點N時,求此時點P向上移動多少秒?
(4)點Q在x軸時,若S△ONQ=8時,請直按寫出點Q的坐標(biāo)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com