【題目】如圖所示,直線AB與x軸交于點A,與y軸交于點C(0,2),且與反比例函數(shù)y=﹣ 的圖象在第二象限內(nèi)交于點B,過點B作BD⊥x軸于點D,OD=2.
(1)求直線AB的解析式;
(2)若點P是線段BD上一點,且△PBC的面積等于3,求點P的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明購買了一部新手機,到某通訊公司咨詢移動電話資費情況,準(zhǔn)備辦理入網(wǎng)手續(xù),該通訊公司工作人員向他介紹兩種不同的資費方案:
方案代號 | 月租費(元) | 免費時間(分) | 超過免費時間的通話費(元/分) |
一 | 10 | 0 | 0.20 |
二 | 30 | 80 | 0.15 |
(1)分別寫出方案一、二中,月話費(月租費與通話費的總和)y(單位:元)與通話時間x(單位:分)的函數(shù)關(guān)系式;
(2)畫出(1)中兩個函數(shù)的圖象;
(3)若小明月通話時間為200分鐘左右,他應(yīng)該選擇哪種資費方案最省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( )
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E(與點B、C不重合)是BC邊上一點,將線段EA繞點E順時針旋轉(zhuǎn)90°到EF,過點F作BC的垂線交BC的延長線于點G,連接CF.
(1)求證:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場促銷,小魚將促銷信息告訴了媽媽,假設(shè)某一商品的定價為,并列出不等式為,那么小魚告訴媽媽的信息是( )
A. 買兩件等值的商品可減100元,再打三折,最后不到1000元
B. 買兩件等值的商品可打三折,再減100元,最后不到1000元
C. 買兩件等值的商品可減100元,再打七折,最后不到1000元
D. 買兩件等值的商品可打七折,再減100元,最后不到1000元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
(材料)如圖,對任意符合條件的直角三角形BAC,繞其銳角頂點逆時針旋轉(zhuǎn)90°得△DAE,所以∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖形我們就能證明勾股定理: .
(請回答)如圖是任意符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④S△ABC=4S△ADF . 其中正確的有( )
A.1個
B.2 個
C.3 個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
(1)若△A1B1C1與△ABC關(guān)于y軸成軸對稱,則△A1B1C1三個頂點坐標(biāo)分別為A1_____,B1_____,C1_____
(2)在y軸上是否存在點Q.使得S△ACQ=S△ABC,如果存在,求出點Q的坐標(biāo),如果不存在,說明理由;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com