【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
(1)若△A1B1C1與△ABC關(guān)于y軸成軸對(duì)稱,則△A1B1C1三個(gè)頂點(diǎn)坐標(biāo)分別為A1_____,B1_____,C1_____
(2)在y軸上是否存在點(diǎn)Q.使得S△ACQ=S△ABC,如果存在,求出點(diǎn)Q的坐標(biāo),如果不存在,說明理由;
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)是_____.
【答案】(﹣1,1) (﹣4,2) (﹣3,4) (2,0)
【解析】
(1)作出A、B、C關(guān)于y軸的對(duì)稱點(diǎn)A′、B′、C′即可;
(2)存在.設(shè)Q(0,m),構(gòu)建方程即可解決問題;
(3)如圖作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′,連接AB′交x軸于P,此時(shí)PA+PB的值最。
(1)△A1B1C1如圖所示,A1(﹣1,1),B1(﹣4,2),C1(﹣3,4).
故答案為(﹣1,1),(﹣4,2),(﹣3,4).
(2)存在.設(shè)Q(0,m),
∵S△ABC=9﹣×2×3﹣×3×1﹣×1×2=,
∴S△QAC=,
∴|m|3﹣|m|1=,
∴m=±,
∴Q(0,)或(0,﹣).
(3)如圖作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′,連接AB′交x軸于P,此時(shí)PA+PB的值最小,此時(shí)P(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)C(0,2),且與反比例函數(shù)y=﹣ 的圖象在第二象限內(nèi)交于點(diǎn)B,過點(diǎn)B作BD⊥x軸于點(diǎn)D,OD=2.
(1)求直線AB的解析式;
(2)若點(diǎn)P是線段BD上一點(diǎn),且△PBC的面積等于3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號(hào)”高鐵A與“復(fù)興號(hào)”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時(shí)間比B車的行駛時(shí)間多40%,兩車的行駛時(shí)間分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y= 的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤ 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2﹣3x+m,直線l:y=kx(k>0),當(dāng)k=1時(shí),拋物線C與直線l只有一個(gè)公共點(diǎn).
(1)求m的值;
(2)若直線l與拋物線C交于不同的兩點(diǎn)A,B,直線l與直線l1:y=﹣3x+b交于點(diǎn)P,且 + = ,求b的值;
(3)在(2)的條件下,設(shè)直線l1與y軸交于點(diǎn)Q,問:是否在實(shí)數(shù)k使S△APQ=S△BPQ?若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),
⑴選取其中三條線段,使得這三條線段能圍成一個(gè)直角三角形.
答:選取的三條線段為 .
⑵只變動(dòng)其中兩條線段的位置,在原圖中畫出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,若∠B=40°,∠EAD=15°.
求∠C的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com