【題目】如圖1,在Rt△GMN中,∠M=90°,P為MN的中點
(1)將線段MP繞著點M逆時針旋轉(zhuǎn)60°得到線段MQ,點P的對應(yīng)點為Q,若點Q剛好落在GN上,
①在圖1中畫出示意圖;
②試問:以線段MQ為直徑的圓是否與GN相切?請說明理由;
(2)如圖2,用直尺和圓規(guī)在GN邊上求作點Q,使得∠GQM=∠PQN.(保留作圖痕跡,不要求寫作法)
【答案】(1)①見解析,②以MQ為直徑的圓與GN相切,理由見解析;(2)見解析
【解析】
(1)①根據(jù)旋轉(zhuǎn)直接畫出圖形即可;
②先判得出是等邊三角形,進(jìn)而求出,再判得出,進(jìn)而求出,判斷出,即可得出結(jié)論;
(2)先作出,再截出,連接AM交GN于Q,即可得出結(jié)論.
(1)①根據(jù)旋轉(zhuǎn)直接畫圖,結(jié)果如圖1所示:
②以MQ為直徑的圓與GN相切,理由如下:
如圖1,連接PQ
由旋轉(zhuǎn)的性質(zhì)可知,
是等邊三角形
∵點P是MN的中點
則以MQ為直徑的圓與GN相切;
(2)如圖2,先作出,再截出,連接AM交GN于Q,點Q為所求作的點.理由如下:
連接AB、PB
由作圖知,
,即
連接AM交GN于點Q,連接PQ
(對頂角相等)
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線BC與⊙A相切于點C,過B作CB的垂線交⊙O于D,E兩點,已知AC=,CB=a,則以BE,BD的長為兩根的一元二次方程是( 。
A.x2+bx+a2=0B.x2﹣bx+a2=0C.x2+bx﹣a2=0D.x2﹣bx﹣a2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商貿(mào)公司以每千克元的價格購進(jìn)一種干果,計劃以每千克元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示: .
(1)求與之間的函數(shù)關(guān)系式;
(2)函數(shù)圖象中點表示的實際意義是 ;
(3)該商貿(mào)公司要想獲利元,則這種干果每千克應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線分別與,軸交于,兩點,點在線段上,拋物線經(jīng)過,兩點,且與軸交于另一點.
(1)求點的坐標(biāo)(用只含,的代數(shù)式表示);
(2)當(dāng)時,若點,均在拋物線上,且,求實數(shù)的取值范圍;
(3)當(dāng)時,函數(shù)有最小值,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(理論學(xué)習(xí))學(xué)習(xí)圖形變換中的軸對稱知識后,我們?nèi)菀自谥本上找到點,使的值最小,如圖所示,根據(jù)這一理論知識解決下列問題:
(1)(實踐運用)如圖,已知的直徑為,弧所對圓心角的度數(shù)為,點是弧的中點,請你在直徑上找一點,使的值最小,并求的最小值.
(2)(拓展延伸)在圖中的四邊形的對角線上找一點,使.(尺規(guī)作圖,保留作圖痕跡,不必寫出作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:幾個全等的正多邊形依次有一邊重合,排成一圈,中間可以圍成一個正多邊形,我們稱作正多邊形的環(huán)狀連接。如圖,我們可以看作正六邊形的環(huán)狀連接,中間圍成一個邊長相等的正六邊形;若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為;
若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為________,若邊長為1的正n邊形作環(huán)狀連接,中間圍成的是等邊三角形,則這個環(huán)狀連接的外輪廓長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com