【題目】在平面直角坐標(biāo)系xOy中,若干個(gè)半徑為1個(gè)單位長度,圓心角是的扇形按圖中的方式擺放,動點(diǎn)K從原點(diǎn)O出發(fā),沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運(yùn)動,若點(diǎn)K在線段上運(yùn)動的速度為每秒1個(gè)單位長度,在弧線上運(yùn)動的速度為每秒個(gè)單位長度,設(shè)第n秒運(yùn)動到點(diǎn)K,為自然數(shù),則的坐標(biāo)是____,的坐標(biāo)是____
【答案】
【解析】
設(shè)第n秒運(yùn)動到Kn(n為自然數(shù))點(diǎn),根據(jù)點(diǎn)K的運(yùn)動規(guī)律找出部分Kn點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此規(guī)律即可得出結(jié)論.
設(shè)第n秒運(yùn)動到Kn(n為自然數(shù))點(diǎn),觀察,發(fā)現(xiàn)規(guī)律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
∵2018=4×504+2,∴K2018為(1009,0).
故答案為:(),(1009,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(1,2)和B(﹣2,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)請直接寫出y1≥y2時(shí)x的取值范圍;
(3)過點(diǎn)B作BE∥x軸,AD⊥BE于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若∠DAC=30°,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接BC
點(diǎn)G是直線BC上方拋物線上一動點(diǎn)不與B、C重合,過點(diǎn)G作y軸的平行線交直線BC于點(diǎn)E,作于點(diǎn)F,點(diǎn)M、N是線段BC上兩個(gè)動點(diǎn),且,連接DM、當(dāng)的周長最大時(shí),求的最小值;
如圖2,連接BD,點(diǎn)P是線段BD的中點(diǎn),點(diǎn)Q是線段BC上一動點(diǎn),連接DQ,將沿PQ翻折,且線段的中點(diǎn)恰好落在線段BQ上,將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)T為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)Q、、、T為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點(diǎn)朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機(jī)的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點(diǎn).以AC為直徑的圓O交AB于點(diǎn)E.
(1)求證:DE是圓O的切線.
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價(jià)格元千克滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價(jià)格元千克滿足一次函數(shù)關(guān)系,如下表:
銷售價(jià)格元千克 | 2 | 4 | 10 | |
市場需求量百千克 | 12 | 10 | 4 |
已知按物價(jià)部門規(guī)定銷售價(jià)格x不低于2元千克且不高于10元千克
求q與x的函數(shù)關(guān)系式;
當(dāng)產(chǎn)量小于或等于市場需求量時(shí),這種半成品食材能全部售出,求此時(shí)x的取值范圍;
當(dāng)產(chǎn)量大于市場需求量時(shí),只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄若該半成品食材的成本是2元千克.
求廠家獲得的利潤百元與銷售價(jià)格x的函數(shù)關(guān)系式;
當(dāng)廠家獲得的利潤百元隨銷售價(jià)格x的上漲而增加時(shí),直接寫出x的取值范圍利潤售價(jià)成本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,BC邊在x軸上,BC的中點(diǎn)與原點(diǎn)O重合,過定點(diǎn)M(-2,0)與動點(diǎn)P(0,t)的直線MP記作l.
(1)若l的解析式為y=2x+4,判斷此時(shí)點(diǎn)A是否在直線l上,并說明理由;
(2)當(dāng)直線l與AD邊有公共點(diǎn)時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,正方形OABC的點(diǎn)A在軸上,點(diǎn)C在軸上,點(diǎn)B(4,4),點(diǎn)E在BC邊上.將△ABE繞點(diǎn)A 順時(shí)針旋轉(zhuǎn)90°,得△AOF,連接EF交軸于點(diǎn)D.
(Ⅰ)若點(diǎn)E的坐標(biāo)為(,).求
(1)線段EF的長;
(2)點(diǎn)D的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)E(,),,試用含的式子表示,并求出使取得最大值時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com