【題目】某食品廠生產一種半成品食材,產量百千克
與銷售價格
元
千克
滿足函數關系式
,從市場反饋的信息發(fā)現,該半成品食材的市場需求量
百千克
與銷售價格
元
千克
滿足一次函數關系,如下表:
銷售價格 | 2 | 4 | 10 | |
市場需求量 | 12 | 10 | 4 |
已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元
千克
求q與x的函數關系式;
當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;
當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄
若該半成品食材的成本是2元
千克.
求廠家獲得的利潤
百元
與銷售價格x的函數關系式;
當廠家獲得的利潤
百元
隨銷售價格x的上漲而增加時,直接寫出x的取值范圍
利潤
售價
成本
【答案】(1) ;(2)
;(3)
;
當
時,廠家獲得的利潤y隨銷售價格x的上漲而增加.
【解析】
(1)直接利用待定系數法求出一次函數解析式進而得出答案;
(2)由題意可得:p≤q,進而得出x的取值范圍;
(3)①利用頂點式求出函數最值得出答案;
②利用二次函數的增減性得出答案即可.
(1)設q=kx+b(k,b為常數且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:
,∴q與x的函數關系式為:q=﹣x+14;
(2)當產量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①當產量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2
;
②∵當x時,y隨x的增加而增加.
又∵產量大于市場需求量時,有4<x≤10,∴當4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.
科目:初中數學 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數少于39個.設排球的個數為m,總費用為y元.
①求y關于m的函數關系式,并求m可取的所有值;
②在學校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(A在B的左側),與y的正半軸交于點C,連結BC,二次函數的對稱軸與x軸的交點為E.
(1)拋物線的對稱軸與x軸的交點E坐標為_____,點A的坐標為_____;
(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點,過點Q作y軸的平行線,與直線BC交于點M,與拋物線交于點N,連結CN,將△CMN沿CN翻折,M的對應點為M′.在圖②中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.
請結合統計圖,回答下列問題:
(1)本次調查學生共 人, = ,并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發(fā),沿著“半徑OA
弧AB
弧BC
半徑CD
半徑DE
”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒
個單位長度,設第n秒運動到點K,
為自然數
,則
的坐標是____,
的坐標是____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了弘揚我國古代數學發(fā)展的偉大成就,某校九年級進行了一次數學知識競賽,并設立了以我國古代數學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據獲獎情況繪制成如圖1和圖2所示的條形統計圖和扇形統計圖,并得到了獲“祖沖之獎”的學生成績統計表:
“祖沖之獎”的學生成績統計表:
分數 | 80 | 85 | 90 | 95 |
人數 | 4 | 2 | 10 | 4 |
根據圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數是多少,并將條形統計圖補充完整;
獲得“祖沖之獎”的學生成績的中位數是多少分,眾數是多少分;
在這次數學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數字“
”,“
”和“2”,隨機摸出一個小球,把小球上的數字記為x放回后再隨機摸出一個小球,把小球上的數字記為y,把x作為橫坐標,把y作為縱坐標,記作點
用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了方便學生在上下學期間安全過馬路,南岸區(qū)政府決定在南開(融僑)中學校門口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學生小劉想利用所學知識測量天橋頂棚距地面的高度.天橋入口A點有一臺階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺階CD,EF,其長度相等且坡度均為i=4:3,頂棚距天橋距離FG=2m,且小劉從入口A點測得頂棚頂端G的仰角為37°,請根據以上數據,幫小劉計算出頂端G點距地面高度為( 。m.(結果保留一位小數,參考數據:≈1.73,sin37°≈
,cos37°≈
,tan37°≈
)
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調查,利用所得數據繪成如圖統計圖表:
頻數分布表
身高分組 | 頻數 | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a=____,b=____;
(2)補全頻數分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點,過點C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com