【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(3,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=-2 x2=3;
③3a+c=0;
④當y>0時,x的取值范圍是-1<x<3;
⑤當x<0時,y隨x增大而增大
其中結論正確的個數是( )
A.4個B.3個C.2個D.1個
【答案】A
【解析】
利用拋物線與x軸的交點個數可對①進行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標為(3,0),則可對②進行判斷;由對稱軸方程得到b=-2a,然后根據x=-1時函數值為0可得到3a+c=0,則可對③進行判斷;根據拋物線在x軸上方所對應的自變量的范圍可對④進行判斷;根據二次函數的性質對⑤進行判斷.
∵拋物線與x軸有2個交點,
∴b2-4ac>0,故①正確;
∵拋物線的對稱軸為直線x=1,
而點(-1,0)關于直線x=1的對稱點的坐標為(3,0),
∴方程ax2+bx+c=0的兩個根是x1=-1,x2=3,故②錯誤;
∵x=-=1,即b=-2a,
而x=-1時,y=0,即a-b+c=0,
∴a+2a+c=0,故③正確;
∵拋物線與x軸的兩點坐標為(-1,0),(3,0),
∴當-1<x<3時,y>0,故④正確;
∵拋物線的對稱軸為直線x=1,
∴當x<1時,y隨x增大而增大,故⑤正確.
綜上所述,正確的結論有①③④⑤,共4個.
故選A.
科目:初中數學 來源: 題型:
【題目】如下圖,反比例函數(>0)圖象上一點A,連結OA,作AB丄軸于點B,作BC∥OA交反比例函數圖象于點C,作CD丄軸于點D,若點A、點C橫坐標分別為m、n,則m:n的值為_______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC繞AB邊上的點D順時針旋轉90°得到△A′B′C′,A′C′交AB于點E.若AD=BE,則△A′DE的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級的哥哥想了一個辦法,他拿了八張撲克牌,將數字為1,2,3,5的四張牌給小麗,將數字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進行:小利哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌上的數字相加,如果和為偶數,和小麗去;如果和為奇數,則哥哥去.
(1)請用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;
(2)哥哥設計的游戲規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在10×10的網格中,橫、縱坐標均為整數的點叫做格點,例如A(3,0),B(4,3)都是格點。將△AOB繞點O順時針旋轉90°得到△COD(點A,B的對應點分別為點C 、D)。
(1)作出△COD,并寫出下列各點的坐標:C( ),D( );
(2)僅用無刻度的直尺找一格點E,使得EB⊥AB,請標明格點E的位置;
(3)僅用無刻度的直尺在OB上找一點F,使得∠OAF=45°(請標明輔助格點M的位置)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課本中有一個例題:
有一個窗戶形狀如圖1,上部是一個半圓,下部是一個矩形,如果制作窗框的材料總長為6m,如何設計這個窗戶,使透光面積最大?
這個例題的答案是:當窗戶半圓的半徑約為0.35m時,透光面積最大值約為1.05m2.
我們如果改變這個窗戶的形狀,上部改為由兩個正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:
(1)若AB為1m,求此時窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計算說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2-4(k-1)x+4k2=0有兩個實數根x1、x2
(1) 求k的取值范圍
(2) 若x1x2-2|x1+x2|=4,求k的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用工件槽(如圖1)可以檢測一種鐵球的大小是否符合要求,已知工件槽的兩個底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內時,若同時具有圖1所示的A、B、E三個接觸點,該球的大小就符合要求.圖2是過球心O及A、B、E三點的截面示意圖,求這種鐵球的直徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com