【題目】如圖1所示,直線y=x+c與x軸交于A(﹣4,0),與y軸交于點C,拋物線y=﹣x2+bx+c經(jīng)過A,C.
(1)求拋物線的解析式 ;
(2)點E在拋物線的對稱軸上,求CE+OE的最小值;
(3)如圖2所示,M是線段OA的上一個動點,過點M垂直于x軸的直線與直線AC和拋物線分別交于點P、N
①若以C,P,N為頂點的三角形與△APM相似,則△CPN的面積為________;
②若點P恰好是線段MN的中點,點F是直線AC上一個動點,在坐標(biāo)平面內(nèi)是否存在點D,使以點D,F,P,M為頂點的四邊形是菱形?若存在,請直接寫出點D的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=﹣x2﹣3x+4;(2)CE+OE的最小值為5;(3)①或4;②存在,當(dāng)PF=FM時,點D在MN垂直平分線上,則D(),當(dāng)PM=PF時,由菱形性質(zhì)點D坐標(biāo)為(﹣1+ , )(﹣1﹣ ,﹣ ),當(dāng)MP=MF時,M、D關(guān)于直線y=﹣x+4對稱,點D坐標(biāo)為(﹣4,3)
【解析】
(1)把已知點坐標(biāo)代入解析式;
(2)取點C關(guān)于拋物線的對稱軸直線l的對稱點C′,由兩點之間線段最短,最小值可得;
(3)①由已知,注意相似三角形的分類討論.
②設(shè)出M坐標(biāo),求點P坐標(biāo).注意菱形是由等腰三角形以底邊所在直線為對稱軸對稱得到的.本題即為研究△CPN為等腰三角形的情況.
(1)將A(﹣4,0)代入y=x+c
∴c=4
將A(﹣4,0)和c=4代入y=﹣x2+bx+c
∴b=﹣3
∴拋物線解析式為y=﹣x2﹣3x+4
(2)作點C關(guān)于拋物線的對稱軸直線l的對稱點C′,連OC′,交直線l于點E.連CE,此時CE+OE的值最。
∵拋物線對稱軸位置線x=﹣
∴CC′=3
由勾股定理OC′=5
∴CE+OE的最小值為5
(3)①當(dāng)△CNP∽△AMP時,
∠CNP=90°,則NC關(guān)于拋物線對稱軸對稱
∴NC=NP=3∴△CPN的面積為
當(dāng)△CNP∽△MAP時
由已知△NCP為等腰直角三角形,∠NCP=90°
過點C作CE⊥MN于點E,設(shè)點M坐標(biāo)為(a,0)
∴EP=EC=﹣a,
則N為(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4
∴P(a,﹣a2﹣a+4)
代入y=x+4
解得a=﹣2
∴△CPN的面積為4
②存在
設(shè)M坐標(biāo)為(a,0)
則N為(a,﹣a2﹣3a+4)
則P點坐標(biāo)為(a,)
把點P坐標(biāo)代入y=﹣x+4
解得a1=﹣4(舍去),a=﹣1
當(dāng)PF=FM時,點D在MN垂直平分線上,則D( )
當(dāng)PM=PF時,由菱形性質(zhì)點D坐標(biāo)為(﹣1+ , )(﹣1﹣ ,﹣ )
當(dāng)MP=MF時,M、D關(guān)于直線y=﹣x+4對稱,點D坐標(biāo)為(﹣4,3)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(0,4)、B(2,0),點C、D分別是OA、AB的中點,在射線CD上有一動點P,若△ABP是直角三角形,則點P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形DEFG的邊EF在△ABC的邊BC上,頂點D、G分別在邊AB、AC上,已知BC=6,△ABC的面積為9,則正方形DEFG的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課外小組為了解同學(xué)們對學(xué)校“陽光跑操”活動的喜歡程度,抽取部分學(xué)生進(jìn)行調(diào)查.被調(diào)查的每個學(xué)生按A(非常喜歡)、B(比較喜歡)、C(一般)、D(不喜歡)四個等級對活動評價.圖1和圖2是該小組采集數(shù)據(jù)后繪制的兩幅統(tǒng)計圖.經(jīng)確認(rèn)扇形統(tǒng)計圖是正確的,而條形統(tǒng)計圖尚有一處錯誤且并不完整.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)此次調(diào)查的學(xué)生人數(shù)為___;
(2)條形統(tǒng)計圖中存在錯誤的是___(填A. B.C中的一個),并在圖中加以改正;
(3)在圖2中補(bǔ)畫條形統(tǒng)計圖中不完整的部分;
(4)如果該校有600名學(xué)生,那么對此活動“非常喜歡”和“比較喜歡”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,△ABC的面積是6,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,全省各地市的2019年初中畢業(yè)升學(xué)體育考試工作正依照某省教育廳的具體要求在有條不紊的進(jìn)行當(dāng)中,某中學(xué)在正式考試前,為了讓同學(xué)們在中招體育考試中獲得理想成績,同時為了了解學(xué)生的當(dāng)前水平,按批次進(jìn)行了模擬考試,并隨機(jī)抽取若干名學(xué)生問卷調(diào)查,現(xiàn)將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表:
組別 | 成績范圍x(分) | 頻數(shù)(人數(shù)) |
A | 60<x≤70 | 54 |
B | 50<x≤60 | m |
C | 40<x≤50 | n |
D | 30<x≤40 | 6 |
(1)這次調(diào)查的總?cè)藬?shù)有 人,表中的m= ,n= ;
(2)扇形統(tǒng)計圖中B組對應(yīng)的圓心角為 °;
(3)請補(bǔ)全頻數(shù)分布直方圖;
(4)若該校九年級共有學(xué)生2700名,且都參加了正式的初中畢業(yè)升學(xué)體育考試,小華也參加了這次考試并得了67分,若規(guī)定60分以上為優(yōu)秀,體育老師想要在獲得優(yōu)秀的學(xué)生中隨機(jī)抽出1名,作為學(xué)生代表向?qū)W弟學(xué)妹們傳授經(jīng)驗,求抽到小華的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac>0;④當(dāng)y<0時,x<﹣1或x>3,其中正確的個數(shù)是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明駕車以100千米/小時的速度從甲地勻速開往乙地,行駛到服務(wù)區(qū)休息了一段時間后以另一速度繼續(xù)勻速行駛,直至到達(dá)乙地.李明與乙地的距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系圖象如圖所示.
(1)求a的值;
(2)求李明從服務(wù)區(qū)到乙地y與x之間的函數(shù)關(guān)系式;
(3)求x=5時李明駕車行駛的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com