【題目】如圖,已知ABC是等邊三角形

(1) 如圖1,點(diǎn)E在線段AB上,點(diǎn)D在射線CB上,且ED=EC,將BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°ACF,連接EF,猜想線段AB、DB、AF之間的數(shù)量關(guān)系

(2) 點(diǎn)E在線段BA的延長(zhǎng)線上,其他條件與(1)中的一致,請(qǐng)?jiān)趫D2上將圖形補(bǔ)充完整,并猜想證明線段AB、DB、AF之間的數(shù)量關(guān)系

【答案】(1)猜想:AB=AF+BD;(2)AB=AF-BD;

【解析】

(1) 猜想:AB=AF+BD ;(2) 首先根據(jù)點(diǎn)E在線段BA的延長(zhǎng)線上,在圖2的基礎(chǔ)上將圖形補(bǔ)充完整,然后判斷出CEF是等邊三角形,即可判斷出EF=EC,再根據(jù)ED=EC,可得ED=EF,CAF=BAC=60°,再判斷出∠DBE=EAF,BDE=AEF;最后根據(jù)全等三角形判定的方法,判斷出EDB≌△FEA,即可判斷出BD=AE,EB=AF,進(jìn)而判斷出AF=AB+BD即可.

(1)猜想:AB=AF+BD;

(2) 猜想:AB=AF-BD,

如圖,

,

ED=EC=CF

BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°ACF,

∴∠ECF=60°,BE=AF,EC=CFBC=AC,

CEF是等邊三角形,

EF=EC,

又∵ED=EC,

ED=EF,

AB=ACBC=AC,

ABC是等邊三角形,

∴∠ABC=60°,

又∵∠CBE=CAF

∴∠CAF=60°,

∴∠EAF=180CAFBAC=180°60°60°=60°

∴∠DBE=EAF;

ED=EC,

∴∠ECD=EDC,

∴∠BDE=ECD+DEC=EDC+DEC,

又∵∠EDC=EBC+BED,

∴∠BDE=EBC+BED+DEC=60°+BEC,

∵∠AEF=CEF+BEC=60°+BEC

∴∠BDE=AEF,

EDBFEA中,

EDBFEA(AAS)

BD=AE,EB=AF

BE=AB+AE,

AF=AB+BD,

AB,DB,AF之間的數(shù)量關(guān)系是:

AB=AF-BD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交兩點(diǎn)A(﹣1,0),B(3,0),過點(diǎn)A作直線AC與拋物線交于C點(diǎn),它的坐標(biāo)為(2,﹣3).

(1)求拋物線及直線AC的解析式;

(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),(不與A,C重合),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),點(diǎn)E與點(diǎn)A、C圍成三角形,求出ACE面積的最大值;

(3)點(diǎn)G為拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )個(gè).

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,延長(zhǎng)BA到點(diǎn)D,使AD=AO,連接DO,若BD=BC,ABC=54,則BCA的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、OB相交于點(diǎn)C、D,問PCPD相等嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD邊AD上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)A、點(diǎn)D不重合,連結(jié)BE、CE,過點(diǎn)B作BFCE,過點(diǎn)C作CFBE,交點(diǎn)為F點(diǎn),連接AF、DF分別交BC于點(diǎn)G、H,則下列結(jié)論錯(cuò)誤的是( 。

A. GH=BC B. SBGF+SCHF=SBCF

C. S四邊形BFCE=ABAD D. 當(dāng)點(diǎn)E為AD中點(diǎn)時(shí),四邊形BECF為菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,對(duì)角線平分,,,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtADE中,DAE=90°,C是邊AE上任意一點(diǎn)(點(diǎn)C與點(diǎn)A、E不重合),以AC為一直角邊在RtADE的外部作Rt△ABC,∠BAC=90°,連接BE、CD.

(1)在圖1中,若AC=AB,AE=AD,現(xiàn)將圖1中的RtADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)銳角α,得到圖2,那么線段BE.CD之間有怎樣的關(guān)系,寫出結(jié)論,并說明理由;

(2)在圖1中,若CA=3,AB=5,AE=10,AD=6,將圖1中的RtADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)銳角α,得到圖3,連接BD、CE.

求證:△ABE∽△ACD;

計(jì)算:BD2+CE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;

(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹狀圖)說明理由(紙牌用表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案