【題目】已知二次函數(shù)y=x2﹣2x﹣3,點P在該函數(shù)的圖象上,點P到x軸、y軸的距離分別為d1、d2 . 設d=d1+d2 , 下列結論中:
①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時,d隨x的增大而增大;
④滿足d=5的點P有四個.
其中正確結論的個數(shù)有(
A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:令二次函數(shù)y=x2﹣2x﹣3中y=0,即x2﹣2x﹣3=0,
解得:x1=﹣1,x2=3.
(i)當x≤﹣1時,d1=x2﹣2x﹣3,d2=﹣x,
d=d1+d2=x2﹣3x﹣3=
d≥1;
(ii)當﹣1<x≤0時,d1=﹣x2+2x+3,d2=﹣x,
d=﹣x2+x+3=﹣
1<x≤3;
(iii)當0<x≤3時,d1=﹣x2+2x+3,d2=x,
d=﹣x2+3x+3=﹣ +
3≤x≤ ;
(iv)當3<x時,d1=x2﹣2x﹣3,d2=x,
d=d1+d2=x2﹣x﹣3= ,
3<d.
綜上可知:d有最小值,沒有最大值,即①成立,②不成了;
當0<x≤ 時,d單調遞增, <x≤3時,d單調遞減,
∴﹣1<x<3時,d隨x的增大而增大,此結論不成了;
令d=5,(i)中存在一個解;(ii)中無解;(iii)中有兩個解;(iv)中一個解.
∴滿足d=5的點P有四個,該結論成立.
∴正確的結論有2個.
故選B.
找出二次函數(shù)與x軸的交點,結合點P所在的象限分段考慮,再根據(jù)二次函數(shù)的性質找出其最值以及在各段區(qū)間內的單調性,對比4個結論即可得知正確的結論有兩個.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<x2 , 與y軸交于點C(0,﹣4),其中x1 , x2是方程x2﹣4x﹣12=0的兩個根.

(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連接CM,當△CMN的面積最大時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 y=ax2+bx+ca≠0)經(jīng)過點A(-3,0)、B(1,0)、C(-2,1),交y軸于點M.
(1)求拋物線的表達式;
(2)D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標;
(3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、A.N為頂點的三角形與△MAO相似?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,點P為線段BC上的一動點(不運動到C,B兩點)過點P作PQ⊥BC交AB于點Q,在AC邊上取一點D,使QD=QP,連結DP,設CP=x

(1)求QP的長,用含x的代數(shù)式表示.
(2)當x為何值時,△DPQ為直角三角形?
(3)記點D關于直線PQ的對稱點為點D′.
①當點D′落在AB邊上時,求x的值;
②在①的條件下,如圖②,將此時的△DPQ繞點P順時針旋轉一個角度α(0°<α<∠DPB),在旋轉過程中,設DP所在的直線與直線AB交于點M,與直線AC交于點N,是否存在這樣的M,N兩點,使△AMN為等腰三角形?若存在,求出此時AN的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD并于點O,經(jīng)過點O的直線交AB于E,交CD于F.

(1)求證:OE=OF.
(2)連接DE,BF,則EF與BD滿足什么條件時,四邊形DEBF是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,A(﹣4,0),B(0,2),連結AB并延長到C,連結CO,若△COB∽△CAO,則點C的坐標為(

A.(1,
B.( ,
C.( ,2
D.( ,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F為對角線AC上兩點,且AE=CF,請你從圖中找出一對全等三角形,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=45°,AB的垂直平分線交AB于點E,交BC于點D;AC的垂直平分線交AC于點G,交BC與點F,連接AD、AF,若AC=3 ,BC=9,則DF等于(

A.
B.
C.4
D.3

查看答案和解析>>

同步練習冊答案