【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,且OA、OB的長滿足|OA﹣8|+(OB﹣620ABO的平分線交x軸于點C過點CAB的垂線,垂足為點D,交y軸于點E

1)求線段AB的長;

2)求直線CE的解析式;

3)若M是射線BC上的一個動點,在坐標(biāo)平面內(nèi)是否存在點P,使以AB、MP為頂點的四邊形是矩形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

【答案】1)求線段AB=10;(2)求直線CE的解析式y=-x-4;(3)P的坐標(biāo)(-4,8)、(3,2);

【解析】試題分析:

(1) 根據(jù)絕對值和平方的非負(fù)性可以獲得線段OAOB的長. 利用勾股定理可以得到線段AB的長.

(2) 要求直線CE的解析式,需要先求點C和點E的坐標(biāo). 利用角平分線的性質(zhì)可以得到OB=DB,OC=DC. 利用已知的線段長度和各線段之間的關(guān)系,在RtADC中通過勾股定理可以獲得關(guān)于OC的方程,求解這一方程即可獲得點C的坐標(biāo). 利用對頂角的關(guān)系可以證明△ADC與△EOC全等進而可以利用線段AD的長獲得點E的坐標(biāo). 利用點C和點E的坐標(biāo)通過待定系數(shù)法即可求得直線CE的解析式.

(3) 根據(jù)題意可以在第一和第二象限內(nèi)各找到一個符合題意的點P. 因此,本小題應(yīng)該對這兩種情況分別進行討論. 在求解位于第二象限內(nèi)的點P坐標(biāo)的時候,可以過點Py軸的垂線PG. 利用△BOC和△AMC相似的關(guān)系獲得線段AM的長,利用矩形的性質(zhì)得到線段PB的長. 利用△PGB與△BOC相似的關(guān)系獲得線段PGBG的長,進而寫出點P的坐標(biāo). 在求解位于第一象限內(nèi)的點P坐標(biāo)的時候可以過點Py軸的垂線PH. 利用△ABM與△DBC相似的關(guān)系獲得線段AM的長,利用矩形的性質(zhì)得到線段PB的長. 利用△PHB與△BOA相似的關(guān)系獲得線段PHBH的長,進而寫出點P的坐標(biāo).

試題解析:

(1)

OA=8,OB=6.

∴在RtAOB中, .

(2) 設(shè)OC=m,AC=OA-OC=8-m.

∵點C在∠ABO的平分線上,

.

OCBE,CDAB

∴∠BOC=BDC=90°.

∵在△BOC和△BDC中,

BOC≌△BDC (AAS).

OB=DB=6,OC=DC=m.

AD=AB-BD=10-6=4.

∵在RtADC中,AC2=AD2+CD2,

(8-m)2=42+m2,

m=3.

OC=m=3.

∴點C的坐標(biāo)為(-3, 0).

∵在△ADC和△EOC中,

,

ADC≌△EOC (ASA).

AD=EO=4.

∴點E的坐標(biāo)為(0, -4).

設(shè)直線CE的解析式為y=kx+b (k0).

將點C和點E的坐標(biāo)分別代入直線CE的解析式,得

,

解之,得

,

∴直線CE的解析式為.

(3) P的坐標(biāo)為(-4, 8)(3, 2). 求解過程如下.

根據(jù)題意,分別對下面兩種情況進行討論.

①如圖①,四邊形AMBP為矩形.

過點PPGOB,垂足為G.

OC=3,OB=6,

∴在RtBOC中, .

∵∠BOC=AMC=90°,BCO=ACM

∴△BOC∽△AMC,

.

AC=OA-OC=8-3=5,OB=6 ,

.

∴在矩形AMBP中, .

∵∠PBM=90°,

∴∠PBG+OBC=180°-PBM=180°-90°=90°.

∵在RtBOC中,∠BCO+OBC=90°

∴∠PBG=BCO.

∵∠PGB=BOC=90°,PBG=BCO

∴△PGB∽△BOC,

.

.

OG=OB+BG=6+2=8.

∴點P的坐標(biāo)為(-4, 8).

②如圖②,四邊形AMBP為矩形.

如圖②,過點PPHOB垂足為H.

CDAB,AMAB,

CDAM

ABM∽△DBC,

.

CD=OC=3,BD=OB=6,AB=10,

.

∴在矩形AMBP中,BP=MA=5.

∵∠ABO+PBH=ABP=90°,

又∵在RtAOB中,∠ABO+BAO=90°,

∴∠PBH=BAO.

∵∠PHB=BOA=90°PBH=BAO,

∴△PHB∽△BOA,

.

.

OH=OB-BH=6-4=2.

∴點P的坐標(biāo)為(3, 2).

綜上所述,點P的坐標(biāo)為(-4, 8)(3, 2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式:3(x+2)>﹣1﹣2(x﹣1),并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個多邊形的內(nèi)角和小于其外角和,則這個多邊形的邊數(shù)是( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解4a3-a的結(jié)果是( )

A. a(4a2-1) B. a(2a-1)2 C. a(2a+1)(2a-1) D. 4a(a+1)(a-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為(
A.6
B.12
C.32
D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳.經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳、1個小餐廳,可供2280名學(xué)生就餐.
(1)求1個大餐廳、1個小餐廳分別可供多少名學(xué)生就餐;
(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=kx+6與拋物線y=+bx+c相交于A,B兩點,且點A(1,4)為拋物線的頂點,點B在x軸上.

(1)求拋物線的解析式;

(2)在(1)中拋物線的第三象限圖象上是否存在一點P,使POB與POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;

(3)若點Q是y軸上一點,且ABQ為直角三角形,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ABC=90°,以AB為直徑作半圓O交AC與點D,點E為BC的中點,連接DE.

(1)求證:DE是半圓O的切線.

(2)若BAC=30°,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組決定去市場購買A,B,C三種儀器,其單價分別為3元,5元,7元,購買這批儀器需花62元;經(jīng)過討價還價,最后以每種單價各下降1元成交,結(jié)果只花50元就買下了這批儀器.那么A種儀器最多可買( 。
A.8件
B.7件
C.6件
D.5件

查看答案和解析>>

同步練習(xí)冊答案