【題目】物華小區(qū)停車場去年收費標準如下:中型汽車的停車費為600/輛,小型汽車的停車費為400/輛,停滿車輛時能收停車費23000元,今年收費標準上調(diào)為:中型汽車的停車費為1000/輛,小型汽車的停車費為600/輛,若該小區(qū)停車場容納的車輛數(shù)沒有變化,今年比去年多收取停車費13000元.

1)該停車場去年能停中、小型汽車各多少輛?

2)今年該小區(qū)因建筑需要縮小了停車場的面積,停車總數(shù)減少了11輛,設該停車場今年能停中型汽車輛,小型汽車有輛,停車場收取的總停車費為元,請求出關于的函數(shù)表達式;

3)在(2)的條件下,若今年該停車場停滿車輛時小型汽車的數(shù)量不超過中型汽車的2倍,則今年該停車場最少能收取的停車費共多少元?

【答案】1)該停車場去年能停中型汽車15輛,小型汽車35輛;(2;(3)今年該停車場最少能收取停車費共28600元.

【解析】

1)設該停車場去年能停中型汽車輛,小型汽車輛,根據(jù)等量關系,列出二元一次方程組,即可求解;

2)由題意得:,根據(jù)“總停車費=中型汽車停車費+小型汽車費”,即可得到關于的函數(shù)表達式;

3)根據(jù)題意,列出關于x的不等式,得到x的取值范圍,再根據(jù)關于的函數(shù)表達式,即可求解.

1)設該停車場去年能停中型汽車輛,小型汽車

根據(jù)題意,得:,解得:,

答:該停車場去年能停中型汽車15輛,小型汽車35輛;

2)設該停車場去年能停中型汽車輛,小型汽車輛,

,

根據(jù)題意,得:,

3)由題意,得:,

,解得:

,

的值隨的增大而增大,

∴當時,值最小,最小值為:(元).

答:今年該停車場最少能收取停車費共28600元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為(  )

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題的逆命題為假命題的是( )

A.如果一元二次方程沒有實數(shù)根,那么

B.線段垂直平分線上任意一點到這條線段兩個端點的距離相等.

C.如果兩個數(shù)相等,那么它們的平方相等.

D.直角三角形兩條直角邊的平方和等于斜邊的平方.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為改善南寧市的交通現(xiàn)狀,市政府決定修建地鐵,甲、乙兩工程隊承包地鐵1號線的某段修建工作,從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的3倍;若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作10天完成.

求甲、乙兩隊單獨完成這項工程各需多少天?

已知甲隊每天的施工費用為萬元,乙隊每天的施工費用為萬元,工程預算的施工費用為500萬元,為縮短工期,擬安排甲、乙兩隊同時開工合作完成這項工程,那么工程預算的施工費用是否夠用?若不夠用,需增加多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:課堂上,同學們研究幾何變量之間的函數(shù)關系問題:如圖,菱形ABCD的對角線AC,BD相交于點O,AC=4,BD=2.點PAC上的一個動點,過點PMNAC,垂足為點P(點M在邊AD、DC上,點N在邊AB、BC上).設AP的長為x(0≤x≤4),AMN的面積為y.

建立模型:(1)yx的函數(shù)關系式為:,

解決問題:(2)為進一步研究yx變化的規(guī)律,小明想畫出此函數(shù)的圖象.請你補充列表,并在如圖的坐標系中畫出此函數(shù)的圖象:

x

0

1

2

3

4

y

0

   

   

   

0

(3)觀察所畫的圖象,寫出該函數(shù)的兩條性質:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,一個長為,寬為的長方形,沿途中的虛線用剪刀均勻的分成四個小長方形,然后按圖②的形狀拼成一個正方形.

1)觀察圖②,請用兩種不同的方法求圖②中陰影部分的面積.

方法1________________________________________(只列式,不化簡)

方法2________________________________________(只列式,不化簡)

2)請寫出三個式子之間的等量關系:_______________________________

3)根據(jù)(2)題中的等量關系,解決如下問題:若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱的底面半徑為,圓柱高是底面直徑,求一只螞蟻從點出發(fā)沿圓柱表面爬行到點的最短路線,小明設計了兩條路線:

路線1:高線底面直徑,如圖所示,設長度為

路線2:側面展開圖中的線段,如圖所示,設長度為

請按照小明的思路補充下面解題過程:

1)解:

2)小明對上述結論有些疑惑,于是他把條件改成:“圓柱底面半徑為,高”繼續(xù)按前面的路線進行計算.(結果保留

①此時,路線1__________.路線2_____________

②所以選擇哪條路線較短?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+2x軸、y軸分別交于A、B兩點,OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求點A的坐標和k的值;

(2)求點C坐標;

(3)直線y=x在第一象限內(nèi)的圖象上是否存在點P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點P坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案