【題目】如圖,直線y=kx+2x軸、y軸分別交于A、B兩點,OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求點A的坐標和k的值;

(2)求點C坐標;

(3)直線y=x在第一象限內(nèi)的圖象上是否存在點P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點P坐標;如果不存在,請說明理由.

【答案】(1)A(﹣1,0),k=2;(2)C(﹣3,1);(3)P坐標為(2,1).

【解析】

(1)對于直線y=kx+2,令x=0求出y的值,確定出B坐標,得到OB的長,根據(jù)OAOB比值求出OA的長,確定出A坐標,代入直線方程即可求出k的值;

(2)過CCM垂直于x軸,利用同角的余角相等得到一對角相等,再由一對直角相等,以及AC=AB,利用AAS得到三角形ACM與三角形BAO全等,由全等三角形對應邊相等得到CM=OA,AM=OB,由AM+OA求出OM的長,即可確定出C坐標;

(3)假設存在點P使得ABP的面積與ABC的面積相等,在直線y= x第一象限上取一點P,連接BP,AP,設點P(m,m),由三角形ABO面積+三角形BPO面積-三角形AOP面積表示出三角形ABP面積,求出三角形AOB面積,兩者相等求出m的值,即可確定出P坐標.

(1)對于直線y=kx+2,令x=0,得到y=2,即B(0,2),OB=2,

OA:OB=,OA=1,即A(﹣1,0),

x=﹣1,y=0代入直線解析式得:0=﹣k+2,即k=2;

(2)過CCMx軸,可得∠AMC=BOA=90°,

∴∠ACM+CAM=90°,

∵△ABC為等腰直角三角形,即∠BAC=90°,AC=BA,

∴∠CAM+BAO=90°,

∴∠ACM=BAO,

CAMABO中,

∴△CAM≌△ABO(AAS),

AM=OB=2,CM=OA=1,即OM=OA+AM=1+2=3,

C(﹣3,1);

(3)假設存在點P使得ABP的面積與ABC的面積相等,在直線y=x第一象限上取一點P,連接BP,AP,

設點P(m,m),

SABP=SABO+SBPO﹣SAOP=1+m﹣m=1+m,而SABC=ABAC=AB2=(12+22)=

可得1+m=,

解得:m=2,

P坐標為(2,1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有兩塊面積相同的試驗田,分別收獲蔬菜900kg和1500kg,已知第一塊試驗田每畝收獲蔬菜比第二塊少300kg,求第一塊試驗田每畝收獲蔬菜多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.

應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為10,圓O分別與AB、AD相切于E、F兩點,且與BG相切于G點.若AO=5,且圓O的半徑為3,則BG的長度為何?( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的直角頂點Ax軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),且∠B=60°,點P為斜邊OB上的一個動點,則PA+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).

.在圖中作出ABC關于y軸對稱的A1B1C1.

.寫出點A1,B1,C1的坐標(直接寫出答案).

A1 B1 C1 ;

.A1B1C1的面積為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC的邊BC上一點,AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是 ;
第二個數(shù)是 ;
第三個數(shù)是

對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于
(1)經(jīng)過探究,我們發(fā)現(xiàn):
設這列數(shù)的第5個數(shù)為a,那么 , ,哪個正確?
請你直接寫出正確的結論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于 ”;
(3)設M表示 , , ,…, ,這2016個數(shù)的和,即
求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D,F(xiàn)分別在AC,BC邊上,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關系的是(

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案