【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于PQ的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
【解析】試題分析:(1)利用AAS證明△AQB≌△DPA,可得AP=BQ;(2)根據(jù)AQ﹣AP=PQ和全等三角形的對(duì)應(yīng)邊相等可寫出4對(duì)線段.
試題解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七(1)班的學(xué)習(xí)小組學(xué)習(xí)“線段中點(diǎn)”內(nèi)容時(shí),得到一個(gè)很有意思的結(jié)論,請(qǐng)跟隨他們一起思考.
(1)發(fā)現(xiàn):
如圖1,線段,點(diǎn)在線段上,當(dāng)點(diǎn)是線段和線段的中點(diǎn)時(shí),線段的長(zhǎng)為_________;若點(diǎn)在線段的延長(zhǎng)線上,其他條件不變(請(qǐng)?jiān)趫D2中按題目要求將圖補(bǔ)充完整),得到的線段與線段之間的數(shù)量關(guān)系為_________.
(2)應(yīng)用:
如圖3,現(xiàn)有長(zhǎng)為40米的拔河比賽專用繩,其左右兩端各有一段(和)磨損了,磨損后的麻繩不再符合比賽要求. 已知磨損的麻繩總長(zhǎng)度不足20米. 小明認(rèn)為只利用麻繩和一把剪刀(剪刀只用于剪斷麻繩)就可以得到一條長(zhǎng)20米的拔河比賽專用繩. 小明所在學(xué)習(xí)小組認(rèn)為此法可行,于是他們應(yīng)用“線段中點(diǎn)”的結(jié)論很快做出了符合要求的專用繩,請(qǐng)你嘗試著“復(fù)原”他們的做法:
①在圖中標(biāo)出點(diǎn)、點(diǎn)的位置,并簡(jiǎn)述畫圖方法;
②請(qǐng)說(shuō)明①題中所標(biāo)示點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:已知Q、K、R為數(shù)軸上三點(diǎn),若點(diǎn)K到點(diǎn)Q的距離是點(diǎn)K到點(diǎn)R的距離的2倍,我們就稱點(diǎn)K是有序點(diǎn)對(duì)[Q,R]的好點(diǎn).
根據(jù)下列題意解答問(wèn)題:
(1)如圖1,數(shù)軸上點(diǎn)Q表示的數(shù)為1,點(diǎn)P表示的數(shù)為0,點(diǎn)K表示的數(shù)為1,點(diǎn)R
表示的數(shù)為2.因?yàn)辄c(diǎn)K到點(diǎn)Q的距離是2,點(diǎn)K到點(diǎn)R的距離是1,所以點(diǎn)K是
有序點(diǎn)對(duì)的好點(diǎn),但點(diǎn)K不是有序點(diǎn)對(duì)的好點(diǎn).同理可以判斷:
點(diǎn)P__________有序點(diǎn)對(duì)的好點(diǎn),點(diǎn)R______________有序點(diǎn)對(duì)的好點(diǎn)(填“是”或“不是”);
(2)如圖2,數(shù)軸上點(diǎn)M表示的數(shù)為-1,點(diǎn)N表示的數(shù)為5,若點(diǎn)X是有序點(diǎn)對(duì)的好點(diǎn),求點(diǎn)X所表示的數(shù),并說(shuō)明理由?
(3)如圖3,數(shù)軸上點(diǎn)A表示的數(shù)為20,點(diǎn)B表示的數(shù)為10.現(xiàn)有一只電子螞蟻C從
點(diǎn)B出發(fā),以每秒2個(gè)單位的速度向左運(yùn)動(dòng)t秒.當(dāng)點(diǎn)A、B、C中恰有一個(gè)點(diǎn)為其余兩有序點(diǎn)對(duì)的好點(diǎn),求t的所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( �。�
A. 當(dāng)AB=BC時(shí),四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時(shí),四邊形ABCD是菱形
C. 當(dāng)∠ABC=90°時(shí),四邊形ABCD是矩形
D. 當(dāng)AC=BD時(shí),四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)判斷BE與CF的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如果AB=8,AC=6,求AE、BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個(gè)相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對(duì)稱,其中第一個(gè)△A1B1C1的頂點(diǎn)A1與點(diǎn)P重合,第二個(gè)△A2B2C2的頂點(diǎn)A2是B1C1與PQ的交點(diǎn)……最后一個(gè)△AnBnCn的頂點(diǎn)Bn,Cn在圓上.
(1)如圖②,當(dāng)n=1時(shí),求正三角形的邊長(zhǎng)a1.
(2)如圖③,當(dāng)n=2時(shí),求正三角形的邊長(zhǎng)a2.
(3)如圖①,求正三角形的邊長(zhǎng)an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 知識(shí)儲(chǔ)備
①如圖 1,已知點(diǎn) P 為等邊△ABC 外接圓的弧BC 上任意一點(diǎn).求證:PB+PC= PA.
②定義:在△ABC 所在平面上存在一點(diǎn) P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn) P 為△ABC
的費(fèi)馬點(diǎn),此時(shí) PA+PB+PC 的值為△ABC 的費(fèi)馬距離.
(2)知識(shí)遷移
①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
如圖 2,在△ABC 的外部以 BC 為邊長(zhǎng)作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長(zhǎng)度即為△ABC 的費(fèi)馬距離.
②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費(fèi)馬點(diǎn) P(要求尺規(guī)作圖).
(3)知識(shí)應(yīng)用
①判斷題(正確的打√,錯(cuò)誤的打×):
ⅰ.任意三角形的費(fèi)馬點(diǎn)有且只有一個(gè)(__________);
ⅱ.任意三角形的費(fèi)馬點(diǎn)一定在三角形的內(nèi)部(__________).
②已知正方形 ABCD,P 是正方形內(nèi)部一點(diǎn),且 PA+PB+PC 的最小值為,求正方形 ABCD 的
邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD、BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn).
(1)求證:BM=CM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)矩形ABCD的長(zhǎng)和寬滿足什么條件時(shí),四邊形MENF是正方形?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com