【題目】如圖,在平面直角坐標(biāo)系中,直線l x.y軸交于BA兩點,點DC分別為線段AB,OB的中點,連結(jié)CD,如圖,將DCB繞點B按順時針方向旋轉(zhuǎn)角,如圖.

(1)連結(jié)OC,AD,求證

(2)當(dāng)0°<<180°時,若DCB旋轉(zhuǎn)至A,CD三點共線時,求線段OD的長;

(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點共線的情況,若存在,求出此直線的表達(dá)式;若不存在,請說明理由.

【答案】(1)詳見解析;(2)(3)存在,

【解析】

1)先確定出點A,B坐標(biāo),進而求出BC,CD,即可判斷出OBC∽△ABD;
2)先確定出ACB≌△BOA,進而判斷出平行四邊形AOBC是矩形,利用勾股定理即可得出結(jié)論;
3)先求出,進而利用勾股定理求出點C的坐標(biāo)(,),最后用待定系數(shù)法即可得出結(jié)論.

解:(1)A(0,4),B(8,0)

OA=4,OB=8

AD=BD,OC=BC

BC=4,

∵∠ABO=DBC,

∴∠ABO+ABC=DBC+ABC.

∴∠OBC=ABD

.

∴△OBC∽△ABD.

(2)當(dāng)0°<<180°,且A,C,D三點共線時,如圖,

∵∠BCD=90°,

∴∠ACB=90°.

∴∠ACB=BOA=90°.

又∵OA=BC=4,AB=BA,

∴△ACB≌△BOA.

AC=BO.

∴四邊形AOBC是平行四邊形 又∵∠AOB=90°.

∴平行四邊形AOBC是矩形.

∴∠AOC=90°,AC=OB=8.

AD=AC+CD=8+2=10.

(3)存在.

當(dāng)180°<<360°A,C,D三點共線時,如圖,

連結(jié)OC,同(1)可得:ABD∽△BOC.

同(2)可得:ACB≌△BOA.

AC=BO=8.

CD=2,∴AD=6.

過點CCMy軸于M,設(shè)OM=y,MC=x.

RtOMCRtAMC中有:

解得:

∴點C的坐標(biāo)(,,

設(shè)直線AC的表達(dá)式為

解得:

所以所求直線AC的表達(dá)式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解我區(qū)初中學(xué)生課外閱讀情況,調(diào)查小組對我區(qū)這學(xué)期初中學(xué)生閱讀課外書籍的冊數(shù)進行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次抽樣調(diào)查的樣本容量是   ;

2)補全條形統(tǒng)計圖;

3)我區(qū)共有18000名初中生,估計我區(qū)初中學(xué)生這學(xué)期課外閱讀超過2冊的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)yk≠0)的圖象的一支交于C1,4),E兩點,CAy軸于點A,EBx軸于點B,則以下結(jié)論:①k的值為4;②BED是等腰直角三角形;③SACOSBEO;④SCEO15;⑤點D的坐標(biāo)為(50).其中正確的是( 。

A. ①②③B. ①②③④C. ②③④⑤D. ①②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富同學(xué)們的校園生活,某校積極開展了形式多樣的社團活動(每人僅限參加一項).小明在八年級隨機抽取了2個班級,對這2個班級參加體育類社團活動的人數(shù)進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖.已知這2個班級共有6%的學(xué)生參加足球項目,且參加足球項目的學(xué)生數(shù)占參加體育類社團活動學(xué)生數(shù)的20%

1)這2個班參加體育類社團活動人數(shù)為

2)請在圖中將表示棒球項目的圖形補充完整;

2)若該校八年級共有600名學(xué)生,請你根據(jù)上述信息估計該校八年級共有多少名學(xué)生參加棒球項目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6y軸與點C.E是直線AB上的動點,過點EEFx軸交AC于點F,交拋物線于點G.

(1)求拋物線y=-x2+bx+c的表達(dá)式;

(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時,求點G的坐標(biāo);

(3)①在y軸上存在一點H,連接EH、HF,當(dāng)點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標(biāo);

②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)為a,內(nèi)部的格點個數(shù)為b,則S=a+(b-1)

對于正三角形網(wǎng)格中的類似問題也有對應(yīng)結(jié)論:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,如圖是該正三角形格點中的兩個多邊形(設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)為m,內(nèi)部的格點個數(shù)為n)

(1)根據(jù)圖中提供的信息填表:

m

n-1

s

多邊形1

11

______

15

多邊形2

8

1

______

(2)Smm-1之間的關(guān)系為______(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中有兩點A0,1),B0),動點P在線段AB上運動,過點Py軸的垂線,垂足為點M,作x軸的垂線,垂足為點N,連接MN,則線段MN的最小值為(  )

A. 1B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三一班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?/span>10分制):

甲隊

7

8

9

7

10

10

9

10

10

10

乙隊

10

8

7

9

8

10

10

9

10

9

1)甲隊成績的中位數(shù)是_________分,乙隊成績的眾數(shù)是_________分;

2)已知甲隊成績的方差是1.42,則成績較為整齊的是_________隊;

3)測試結(jié)果中,乙隊獲滿分的四名同學(xué)相當(dāng)優(yōu)秀,他們是三名男生、一名女生,現(xiàn)準(zhǔn)備從這四名同學(xué)中隨機抽取兩人參加學(xué)校組織的經(jīng)典誦讀比賽,用樹狀圖或列表法求恰好抽中一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把半徑為沿弦折疊,經(jīng)過圓心,則陰影部分的面積為__________.(結(jié)果保留

查看答案和解析>>

同步練習(xí)冊答案