【題目】如圖1,由于四邊形具有不穩(wěn)定性,因此在同一平面推矩形的邊可以改變它的形狀(推移過程中邊的長度保持不變).已知矩形ABCD,AB=4cm,AD=3cm,固定邊AB,推邊AD,使得點D落在點E處,點C落在點F處.
(1)如圖2,如果∠DAE=30°,求點E到邊AB的距離;
(2)如圖3,如果點A、E、C三點在同一直線上,求四邊形ABFE的面積.
【答案】(1)點E到邊AB的距離是cm;(2)
【解析】
(1)過點E作EH⊥AB軸,垂足為H,根據(jù)矩形的性質(zhì)得到∠DAB=90°,AD∥EH,根據(jù)平行線的性質(zhì)得到∠DAE=∠AEH,求得∠AEH=30°,解直角三角形即可得到結(jié)論;
(2)過點E作EH⊥AB,垂足為H.根據(jù)矩形的性質(zhì)得到AD=BC.得到BC=3cm.根據(jù)勾股定理得到cm,根據(jù)平行線分線段成比例定理得到cm,根據(jù)四邊形的性質(zhì)得到AD=AE=BF,AB=DC=EF.求得四邊形ABFE是平行四邊形,于是得到結(jié)論.
解:(1)如圖,過點E作EH⊥AB軸,垂足為H,
∵四邊形ABCD是矩形,
∴∠DAB=90°,
∴AD∥EH,
∴∠DAE=∠AEH,
∵∠DAE=30°,
∴∠AEH=30°.
在直角△AEH中,∠AHE=90°,
∴EH=AEcos∠AEH,
∵AD=AE=3cm,
∴cm,
即點E到邊AB的距離是cm;
(2)如圖3,過點E作EH⊥AB,垂足為H.
∵四邊形ABCD是矩形,
∴AD=BC,
∵AD=3cm,
∴BC=3cm,
在直角△ABC中,∠ABC=90°,AB=4cm,
∴cm,
∵EH∥BC,
∴,
∵AE=AD=3 cm,
∴,
∴cm,
∵推移過程中邊的長度保持不變,
∴AD=AE=BF,AB=DC=EF,
∴四邊形ABFE是平行四邊形,
∴cm2.
科目:初中數(shù)學 來源: 題型:
【題目】5G時代即將來臨,湖北省提出“建成全國領先、中部一流5G網(wǎng)絡”的戰(zhàn)略目標.據(jù)統(tǒng)計,目前湖北5G基站的數(shù)量有1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座.
(1)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率;
(2)若2023年保持前兩年5G基站數(shù)量的年平均增長率不變,到2023年底,全省5G基站數(shù)量能否超過29萬座?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對邊AB、DC的延長線相交于點F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某二次函數(shù)的圖象是一條頂點為P(4.-4)的拋物線,它經(jīng)過原點和點A,它的對稱軸交線段
OA于點M.點N在對移軸上,且點M、N關于點P對稱,連接AN,ON
(1)求此二次函數(shù)的解析式:
(2)若點A的坐標是(6,-3).,請直接寫出MN的長
(3)若點A在拋物線的對稱軸右側(cè)運動時,則∠ANM與∠ONM有什么數(shù)量關系?并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點與稱為一對泛對稱點.
(1)若點,是一對泛對稱點,求的值;
(2)若,是第一象限的一對泛對稱點,過點作軸于點,過點作軸于點,線段,交于點,連接,,判斷直線與的位置關系,并說明理由;
(3)拋物線交軸于點,過點作軸的平行線交此拋物線于點(不與點重合),過點的直線與此拋物線交于另一點.對于任意滿足條件的實數(shù),是否都存在,是一對泛對稱點的情形?若是,請說明理由,并對所有的泛對稱點,探究當>時的取值范圍;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高情況,并繪制了如下不完整的統(tǒng)計圖.請根據(jù)圖中信息,解決下列問題:
(1)求甲、乙兩個班共有女生多少人?
(2)請將頻數(shù)分布直方圖補充完整;
(3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=9,BC=12,點E是BC中點,點F是邊CD上的任意一點,當△AEF的周長最小時,則DF的長為( )
A.4B.6C.8D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書法是我國的文化瑰寶,研習書法能培養(yǎng)高雅的品格.某校為加強書法教學,了解學生現(xiàn)有的書寫能力,隨機抽取了部分學生進行測試,測試結(jié)果分為優(yōu)秀、良好、及格、不及格四個等級,分別用A,B,C,D表示,并將測試結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖中的信息解答以下問題:
(1)本次抽取的學生人數(shù)是 ,扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù)是 .
(2)把條形統(tǒng)計圖補充完整.
(3)若該學校共有2800人,等級達到優(yōu)秀的人數(shù)大約有多少?
(4)A等級的4名學生中有3名女生1名男生,現(xiàn)在需要從這4人中隨機抽取2人參加電視臺舉辦的“中學生書法比賽”,請用列表或畫樹狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點A、B,與軸交于點C,點B的坐標為 ,點在軸上,連接AD.
(1)= ;
(2)若點是拋物線在第二象限上的點,過點作PF⊥x軸,垂足為,與交于點E.是否存在這樣的點P,使得PE=7EF?若存在,求出點的坐標;若不存在,請說明理由;
(3)若點在拋物線上,且點的橫坐標大于-4,過點作,垂足為H,直線與軸交于點K,且,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com