如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(點(diǎn)P與F、G不重合),作PQ∥y軸與拋物線交于點(diǎn)Q.
(1)若經(jīng)過(guò)B、E、C三點(diǎn)的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b= ,c= (直接填空)
(2)①以P、D、E為頂點(diǎn)的三角形是直角三角形,則點(diǎn)P的坐標(biāo)為 (直接填空)
②若拋物線頂點(diǎn)為N,又PE+PN的值最小時(shí),求相應(yīng)點(diǎn)P的坐標(biāo).
(3)連結(jié)QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
(1)b=2,c=9;(2)①P(2,4)或(1,3);②P;(3)①若四邊形PMNQ為平行四邊形時(shí),點(diǎn)P坐標(biāo)為,②若四邊形PMNQ為等腰梯形時(shí),點(diǎn)P坐標(biāo) 為.
解析試題分析:(1)根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)易求對(duì)稱軸,利用對(duì)稱軸公式來(lái)求b的值;根據(jù)點(diǎn)E的坐標(biāo)來(lái)求c的值.
(2)①分兩種情況:∠EDP=90°和EPD=90°.
②以直線AD為對(duì)稱軸,作點(diǎn)N的對(duì)稱點(diǎn)N′,連接EN′,EN′與直線AD的交點(diǎn)即為所求的點(diǎn)P.
(3)設(shè)點(diǎn)P為(x,x+2)Q(x,-x2+3x+4),則PQ=-x2+2x+2,根據(jù)PQNM是平行四邊形,則PQ=MN,即可求得PM的長(zhǎng),判斷是否成立,從而確定;根據(jù)①的解法即可確定P的坐標(biāo).
(1)如圖1,∵OA=2,OC=OE=4,B為線段OA的中點(diǎn),
∴B(-1,0),C(4,0),E(0,4).
∴拋物線對(duì)稱軸為.
又 過(guò)B、E、C三點(diǎn)的拋物線的解析式為y=-x2+(2b-1)x+c-5,
∴,c-5=4,解得 b=2,c=9.
(2)①設(shè)直線AD的解析式為:y=kx+2(k≠0).
∵A(-2,0),∴0=-2k+2,解得 k=1.
∴直線AD的解析式為:y=x+2.
如圖1,過(guò)點(diǎn)E作EP∥x軸交直線AD與點(diǎn)P,則∠PED=90°.
∴把y=4代入y=x+2,得x=2,則P(2,4).∴ED=EP.
過(guò)點(diǎn)E作EP′⊥直線AD于點(diǎn)P′,則∠EP′D=90°.
∴點(diǎn)P′是線段DP的中點(diǎn).∴P′(1,3).
綜上所述,符合條件的點(diǎn)P的坐標(biāo)為:(2,4)或(1,3).
②如圖2,作點(diǎn)N關(guān)于直線AD的對(duì)稱點(diǎn)N′,連接EN′,EN′與直線AD的交點(diǎn)即為所求的點(diǎn)P.
所以 P.
(3)點(diǎn)M坐標(biāo)是,點(diǎn)N坐標(biāo)是,∴MN=.
①設(shè)點(diǎn)P為(x,x+2),Q(x,-x2+3x+4),則PQ=-x2+2x+2.
如圖3,能成為平行四邊形,若P′Q′NM是平行四邊形形,則P′Q′=MN,可得x1=,x2=,
當(dāng)x2=時(shí),點(diǎn)P′與點(diǎn)M重合;
當(dāng)x1=時(shí),點(diǎn)P的坐標(biāo)是.
②如圖3,能成為等腰梯形,作QH⊥MN于點(diǎn)H,作PJ⊥MN于點(diǎn)J,則NH=MJ,
則,解得:x=.
此時(shí)點(diǎn)P的坐標(biāo)是.
考點(diǎn):1.二次函數(shù)綜合題;2.動(dòng)點(diǎn)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知二次函數(shù)經(jīng)過(guò)、、C三點(diǎn),點(diǎn)是拋物線與直線的一個(gè)交點(diǎn).
(1)求二次函數(shù)關(guān)系式和點(diǎn)C的坐標(biāo);
(2)對(duì)于動(dòng)點(diǎn),求的最大值;
(3)若動(dòng)點(diǎn)M在直線上方的拋物線運(yùn)動(dòng),過(guò)點(diǎn)M做x軸的垂線交x軸于點(diǎn)F,如果直線AP把線段MF分成1:2的兩部分,求點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線交坐標(biāo)軸于A、B、D三點(diǎn),過(guò)點(diǎn)D作軸的平行線交拋物線于點(diǎn)C.直線l過(guò)點(diǎn)E(0,-),且平分梯形ABCD面積.
⑴ 直接寫(xiě)出A、B、D三點(diǎn)的坐標(biāo);
⑵ 直接寫(xiě)出直線l的解析式;
⑶ 若點(diǎn)P在直線l上,且在x軸上方,tan∠OPB=,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,- 3),且頂點(diǎn)坐標(biāo)為(1,- 4).求這個(gè)解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
(1)點(diǎn)P將要運(yùn)行路徑AD的長(zhǎng)度為 ;點(diǎn)Q將要運(yùn)行的路徑折線CB—BA的長(zhǎng)度為 .
(2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(zhǎng)(a≤),當(dāng)t =4秒時(shí):
①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請(qǐng)求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線y=與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,以AC為直徑作⊙M,點(diǎn)是劣弧AO上一動(dòng)點(diǎn)(點(diǎn)與不重合).拋物線y=-經(jīng)過(guò)點(diǎn)A、C,與x軸交于另一點(diǎn)B,
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,是︱PA—PC︱的值最大;若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(3)連交于點(diǎn),延長(zhǎng)至,使,試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),直線與⊙M相切,并請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價(jià)為40元.經(jīng)過(guò)市場(chǎng)調(diào)查,一周的銷售量y件與銷售單價(jià)x(x≥50)元/件的關(guān)系如下表:
銷售單價(jià)x (元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y (件) | … | 450 | 400 | 300 | 250 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,拋物線的解析式是y=x2+1,點(diǎn)C的坐標(biāo)為(-4,0),平行四邊形OABC的頂點(diǎn)A,B在拋物線上,AB與y軸交于點(diǎn)M,已知點(diǎn)Q(x,y)在拋物線上,點(diǎn)P(t,0)在x軸上.
(1)寫(xiě)出點(diǎn)M的坐標(biāo);
(2)當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時(shí);
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當(dāng)梯形CMQP的兩底的長(zhǎng)度之比為1∶2時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某賓館有30個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天160元時(shí),房間會(huì)全部住滿。當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑。賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用。根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于260元。
設(shè)每個(gè)房間的房?jī)r(jià)每天增加x元(x為10的整數(shù)倍)。
(1)設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com