已知二次函數(shù)的圖象經(jīng)過點(0,- 3),且頂點坐標為(1,- 4).求這個解析式。

y=x2-2x-3.

解析試題分析:可設(shè)解析式為頂點式,根據(jù)圖象經(jīng)過點(0,-3)求待定系數(shù),即可得解.
根據(jù)題意,設(shè)函數(shù)解析式為y=a(x-1)2-4.
∵圖象經(jīng)過點(0,-3),
∴-3=a-4,a=1.
∴解析式為y=(x-1)2-4=x2-2x-3.
考點:二次函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線(b,c均為常數(shù))與x軸交于兩點,與y軸交于點
(1)求該拋物線對應(yīng)的函數(shù)表達式;
(2)若P是拋物線上一點,且點P到拋物線的對稱軸的距離為3,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,且對稱軸為x=1,點A坐標為(-1,0).則下面的四個結(jié)論:
①2a+b=0;②4a+2b+c>0;③B點坐標為(4,0);④當(dāng)x<-1時,y>0.
其中正確的是( 。
A.①②      B.③④      C.①④      D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形ABCD中,AB=1,BC=3,點E為BC邊上的動點(點E與點B、C不重合),設(shè)BE=x.
操作:在射線BC上取一點F,使得EF=BE,以點F為直角頂點、EF為邊作等腰直角三角形EFG,設(shè)△EFG與矩形ABCD重疊部分的面積為S.
(1)求S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)S是否存在最大值?若存在,請直接寫出最大值,若不存在,請說明理由.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

心理學(xué)家通過實驗發(fā)現(xiàn):初中學(xué)生聽講的注意力隨時間變化,講課開始時,學(xué)生注意力逐漸增強,中間有一段平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標數(shù)y隨時間表t(分鐘)變化的函數(shù)圖象如下.當(dāng)0≤t≤10時,圖像是拋物線的一部分,當(dāng)10≤t≤20時和20≤t≤40時,圖像是線段。
(1)當(dāng)0≤t≤10時,求注意力指標數(shù)y與時間t的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)探究題需要講解24分鐘,問老師能否經(jīng)過恰當(dāng)安排,使學(xué)生在探究這道題時,注意力指標數(shù)不低于45?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應(yīng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系中,已知點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(點P與F、G不重合),作PQ∥y軸與拋物線交于點Q.
(1)若經(jīng)過B、E、C三點的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b=         ,c=         (直接填空)
(2)①以P、D、E為頂點的三角形是直角三角形,則點P的坐標為         (直接填空)
②若拋物線頂點為N,又PE+PN的值最小時,求相應(yīng)點P的坐標.
(3)連結(jié)QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當(dāng)k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍.
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系xOy中,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),點B的坐標為,與y軸交于點,頂點為D。

(1)求拋物線的解析式及頂點D坐標;
(2)聯(lián)結(jié)AC、BC,求∠ACB的正切值;

查看答案和解析>>

同步練習(xí)冊答案