【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè)△ABC,頂點(diǎn),,.
(1)畫出△ABC 關(guān)于 y 軸的對(duì)稱圖形(不寫畫法)
點(diǎn)A 關(guān)于 x 軸對(duì)稱的點(diǎn)坐標(biāo)為_____________;
點(diǎn) B 關(guān)于 y 軸對(duì)稱的點(diǎn)坐標(biāo)為_____________;
點(diǎn) C 關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)為_____________;
(2)若網(wǎng)格上的每個(gè)小正方形的邊長為 1,求△ABC 的面積.
【答案】(1)見解析;(-1,-3)、(-2,0)(3,1)(2)9.
【解析】
(1)根據(jù)關(guān)于y軸對(duì)稱的對(duì)應(yīng)點(diǎn)的坐標(biāo)特征,即橫坐標(biāo)相反,縱坐標(biāo)相同,即可得出對(duì)應(yīng)點(diǎn)的 的坐標(biāo),然后連接三點(diǎn)即可畫出△ABC關(guān)于y軸的對(duì)稱圖形.根據(jù)關(guān)于x軸、y軸、原點(diǎn)對(duì)稱的對(duì)應(yīng)點(diǎn)的坐標(biāo)特征即可解決.(2)將三角形ABC面積轉(zhuǎn)化為求解即可.
解:(1)∵三角形各點(diǎn)坐標(biāo)為:,,.
∴關(guān)于y軸對(duì)稱的對(duì)應(yīng)點(diǎn)的坐標(biāo)為,依次連接個(gè)點(diǎn).
由關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)特征可知,A點(diǎn)關(guān)于x軸對(duì)稱的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-1,-3),
由關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征可知,B點(diǎn)關(guān)于y軸對(duì)稱的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2,0),
由關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征可知,C點(diǎn)關(guān)于原點(diǎn)對(duì)稱的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(3,1).
(2)分別找到點(diǎn)D(-3,3)、E(2,3)、F(2,-1),由圖可知,四邊形CDEF為矩形,且=20,=20-4--=9.所以△ABC的面積為9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,,下列判斷中錯(cuò)誤的是( )
A.如果,,那么四邊形ABCD是平行四邊形
B.如果,,那么四邊形ABCD是矩形
C.如果,,那么四邊形ABCD是菱形
D.如果,AC垂直平分BD,那么四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是( )
A.①②③ B.①②④ C.①③④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
利用完全平方公式,可以將多項(xiàng)式變形為的形式,我們把這樣的變形方法叫做多項(xiàng)式的配方法.
運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行分解因式.
例如:
根據(jù)以上材料,解答下列問題:
(1)用多項(xiàng)式的配方法將化成的形式;
(2)利用上面閱讀材料的方法,把多項(xiàng)式進(jìn)行因式分解;
(3)求證:,取任何實(shí)數(shù)時(shí),多項(xiàng)式的值總為正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:
(1)乙隊(duì)開挖到30m時(shí),用了_____ h. 開挖6h時(shí)甲隊(duì)比乙隊(duì)多挖了____ m;
(2)請你求出:
①甲隊(duì)在的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
②乙隊(duì)在的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x 為何值時(shí),甲、 乙兩隊(duì)在 施工過程中所挖河渠的長度相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線的函數(shù)表達(dá)式為,它與軸、軸的交點(diǎn)分別為A、B兩點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)F是軸上一動(dòng)點(diǎn),⊙P經(jīng)過點(diǎn)B且與軸相切于點(diǎn)F,設(shè)⊙P的圓心坐標(biāo)為P(x,y),求y與之間的函數(shù)關(guān)系;
(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于事件發(fā)生可能性的表述,正確的是( 。
A. 事件:“在地面,向上拋石子后落在地上”,該事件是隨機(jī)事件
B. 體育彩票的中獎(jiǎng)率為10%,則買100張彩票必有10張中獎(jiǎng)
C. 在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品
D. 擲兩枚硬幣,朝上的一面是一正面一反面的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時(shí)間,y 表示張強(qiáng)離家的距離。根據(jù)圖象提供的信息,以下四個(gè)說法錯(cuò)誤的是( )
A. 體育場離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時(shí)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com