【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機對部分游客進行了關(guān)于“景區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表.
滿意度 | 人數(shù) | 所占百分比 |
非常滿意 | 12 | 10% |
滿意 | 54 | m |
比較滿意 | n | 40% |
不滿意 | 6 | 5% |
根據(jù)圖表信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;
(2)請補全條形統(tǒng)計圖;
(3)據(jù)統(tǒng)計,該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對景區(qū)服務(wù)工作的肯定,請你估計該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動的平均時間不少于1小時.為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?
(2)補充頻數(shù)分布直方圖;
(3)求表示戶外活動時間 1小時的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測試成績達到90.0分及以上的為優(yōu)秀;達到80.0分至89.9分的為良好;達到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學(xué)生體質(zhì)健康狀況,從該校九年級學(xué)生中隨機抽取了10%的學(xué)生進行體質(zhì)測試,測試結(jié)果如下面的統(tǒng)計表和扇形統(tǒng)計圖所示。
各等級學(xué)生平均分統(tǒng)計表
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
平均分 | 92.1 | 85.0 | 69.2 | 41.3 |
各等級學(xué)生人數(shù)分布扇形統(tǒng)計圖
(1)扇形統(tǒng)計圖中“不及格”所占的百分比是 ;
(2)計算所抽取的學(xué)生的測試成績的平均分;
(3)若所抽取的學(xué)生中所有不及格等級學(xué)生的總分恰好等于某一個良好等級學(xué)生的分?jǐn)?shù),請估計該九年級學(xué)生中約有多少人達到優(yōu)秀等級。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點E是弧AC上的一個動點,過點E的切線與AD交于點M.與CD交于點N.
(1)求證:∠MBN=45°;
(2)設(shè)AM=x,CN=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)設(shè)正方形的對角線AC交BM于P,BN于Q,如果AP=m,CQ=n,求m與n之間滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
如圖1,拋物線y=x2+x+3與x軸交于C、F兩點(點C在點F左邊),與y軸交于點D,AD=2,點B坐標(biāo)為(﹣4,5),點E為AB上一點,且BE=ED,連接CD,CB,CE.
(1)求點C、D、E的坐標(biāo);
(2)如圖2,延長ED交x軸于點M,請判斷△CEM的形狀,并說明理由;
(3)在圖2的基礎(chǔ)上,將△CEM沿著CE翻折,使點M落在點M'處,請判斷點M'是否在此拋物線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進行直觀推導(dǎo)和解釋.例如:利用圖形的幾何意義推證完全平方公式.將一個邊長為a的正方形的邊長增加b,形成兩個矩形和兩個正方形,如圖1,這個圖形的面積可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2=a2+2ab+b2
這就驗證了兩數(shù)和的完全平方公式.
問題提出:
如何利用圖形幾何意義的方法推證:13+23=32 如圖2,A表示1個1×1的正方形,即:1×1×1=13,B表示1個2×2的正方形,C與D恰好可以拼成1個2×2的正方形,因此:B、C、D就可以表示2個2×2的正方形,即:2×2×2=23,而A、B、C、D恰好可以拼成一個(1+2)×(1+2)的大正方形,由此可得:13+23=(1+2)2=32
嘗試解決:
請你類比上述推導(dǎo)過程,利用圖形幾何意義方法推證:13+23+33= (要求自己構(gòu)造圖形并寫出推證過程)
類比歸納:
請用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= (要求直接寫出結(jié)論,不必寫出解題過程)
實際應(yīng)用:
圖3是由棱長為1的小正方體搭成的大正方體,圖中大小正方體一共有多少個?為了正確數(shù)出大小正方體的總個數(shù),我們可以分類統(tǒng)計,即分別數(shù)出棱長是1,2,3和4的正方體的個數(shù),再求總和.
例如:棱長是1的正方體有:4×4×4=43個,棱長是2的正方體有:3×3×3=33個,棱長是3的正方體有:2×2×2=23個,棱長是4的正方體有:1×1×l=13個,然后利用(3)類比歸納的結(jié)論,可得: = 圖4是由棱長為1的小正方體成的大正方體,圖中大小正方體一共有 個.
逆向應(yīng)用:
如果由棱長為1的小正方體搭成的大正方體中,通過上面的方式數(shù)出的大小正方體一共有44100個,那么棱長為1的小正方體一共有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AO=4,點C在半圓上,OC⊥AB,垂足為點O,P為半圓上任意一點過P點作PE⊥OC于點E,設(shè)△OPE的內(nèi)心為M,連接OM
(1)求∠OMP的度數(shù);
(2)隨著點P在半圓上位置的改變,∠CMO的大小是否改變,說明理由;
(3)當(dāng)點P在半圓上從點B運動到點A時,直接寫出內(nèi)心M所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,AB=AC,DE=DF,△ABC≌△DEF.?dāng)?shù)學(xué)實驗課上,張老師讓同學(xué)們用這兩張紙片進行如下操作:
(1)(操作探究1)保持△ABC不動,將△DEF沿射線BC方向平移至圖2所示位置,通過度量發(fā)現(xiàn)BE:CE=1:2,則S△CGE:S△CAB= ;
(2)(操作探究2)保持△ABC不動,將△DEF通過一次全等變換(平移、旋轉(zhuǎn)或翻折后和△ABC拼成以BC為一條對角線的菱形,請用語言描述你的全等變換過程.
(3)(操作探究3)將兩個三角形按圖3所示放置:點C與點F重合,AB∥DE.保持△ABC不動,將△DEF沿射線DA方向平移.若AB=13,BC=10,設(shè)△DEF平移的距離為m.
①當(dāng)m=0時,連接AD、BE,判斷四邊形ABED的形狀并說明理由;
②在平移的過程中,四邊形ABED能否成為正方形?若能,請求出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某校為了解九年級男同學(xué)的體育考試準(zhǔn)備情況,隨機抽取部分男同學(xué)進行了1000米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學(xué)校繪制了如下不完整的統(tǒng)計圖.
(1)根據(jù)給出的信息,補全兩幅統(tǒng)計圖;
(2)該校九年級有600名男生,請估計成績未達到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運動會1000米比賽,預(yù)賽分為A、B、C三組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com