【題目】育才中學計劃召開“誠信在我心中”主題教育活動,需要選拔活動主持人,經(jīng)過全校學生投票推薦,有2名男生和1名女生被推薦為候選主持人.
(1)小明認為,如果從3名候選主持人中隨機選拔1名主持人,不是男生就是女生,因此選出的主持人是男生和女生的可能性相同,你同意他的說法嗎?為什么?
(2)如果從3名候選主持人中隨機選拔2名主持人,請通過列表或樹狀圖求選拔出的2名主持人恰好是1名男生和1名女生的概率.
【答案】
(1)
解:不同意他的說法.理由如下:
∵有2名男生和1名女生,
∴主持人是男生的概率=,
主持人是女生的概率=;
(2)
解:畫出樹狀圖如下:
一共有6種情況,恰好是1名男生和1名女生的有4種情況,
所以,P(恰好是1名男生和1名女生)==.
【解析】(1)根據(jù)概率的意義解答即可;
(2)畫出樹狀圖,然后根據(jù)概率的意義列式計算即可得解.
【考點精析】本題主要考查了可能性的大小和列表法與樹狀圖法的相關知識點,需要掌握一般地,隨機事件發(fā)生的可能性是有大小的,不同的隨機事件發(fā)生的可能性的大小有可能不同;當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某糧油超市平時每天都將一定數(shù)量的某些品種的糧食進行包裝以便出售,已知每天包裝大黃米的質量是包裝江米質量的倍,且每天包裝大黃米和江米的質量之和為45千克.
(1)求平均每天包裝大黃米和江米的質量各是多少千克?
(2)為迎接今年6月20日的“端午節(jié)”,該超市決定在前20天增加每天包裝大黃米和江米的質量,二者的包裝質量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復到原來每天的包裝質量.分別求出在這20天內(nèi)每天包裝大黃米和江米的質量隨天數(shù)變化的函數(shù)關系式,并寫出自變量的取值范圍.
(3)假設該超市每天都會將當天包裝后的大黃米和江米全部售出,已知大黃米成本價為每千克7.9元,江米成本每千克9.5元,二者包裝費用平均每千克均為0.5元,大黃米售價為每千克10元,江米售價為每千克12元,那么在這20天中有哪幾天銷售大黃米和江米的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線上運動,則k的值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校以“我最喜愛的體育運動”為主題對全校學生進行隨機抽樣調(diào)查,調(diào)查的運動項目有:籃球、羽毛球、乒乓球、跳繩及其它項目(每位同學僅選一項).根據(jù)調(diào)查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
運動項目 | 頻數(shù)(人數(shù)) | 頻率 |
籃球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳繩 | 18 | 0.15 |
其它 | 12 | 0.10 |
請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的m= , n=;
(2)在扇形統(tǒng)計圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為 °;
(3)從選擇“籃球”選項的30名學生中,隨機抽取3名學生作為代表進行投籃測試,則其中某位學生被選中的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是射線CB上的一個動點,把△DCE沿DE折疊,點C的對應點為C′.
(1)若點C′剛好落在對角線BD上時,BC′=;
(2)若點C′剛好落在線段AB的垂直平分線上時,求CE的長;
(3)若點C′剛好落在線段AD的垂直平分線上時,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉,旋轉過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).
(1)如圖①,當α=90°時,DE,DF,AD之間滿足的數(shù)量關系是_____;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當α=60°時,(1)中的結論變?yōu)镈E+DF=AD,請給出證明;
(3)在(2)的條件下,若旋轉過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關系,直接寫出結論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學要進行理、化實驗加試,需用九年級兩個班級的學生整理實驗器材.已知一班單獨整理需要30分鐘完成.
(1)如果一班與二班共同整理15分鐘后,一班另有任務需要離開,剩余工作由二班單獨整理15分鐘才完成任務,求二班單獨整理這批實驗器材需要多少分鐘?
(2)如果一、二的工作效率不變,先由二班單獨整理,時間不超過20分鐘,剩余工作再由一班獨立完成,那么整理完這批器材一班至少還需要多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于 ;
(2)在網(wǎng)格中畫出△A1B1C1關于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放. 某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若 ,求2個A級水樣本混合化驗結果不達標的概率;
(Ⅱ) 若 ,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com