【題目】已知二次函數(shù)y=﹣x2+4x.

(1)寫(xiě)出二次函數(shù)y=﹣x2+4x圖象的對(duì)稱軸;

(2)在給定的平面直角坐標(biāo)系中,畫(huà)出這個(gè)函數(shù)的圖象(列表、描點(diǎn)、連線);

(3)根據(jù)圖象,寫(xiě)出當(dāng)y0時(shí),x的取值范圍.

【答案】(1)對(duì)稱軸是過(guò)點(diǎn)(2,4)且平行于y軸的直線x=2;(2)見(jiàn)解析;(3)x0x4.

【解析】試題分析:(1)把一般式化成頂點(diǎn)式即可求得;

(2)首先列表求出圖象上點(diǎn)的坐標(biāo),進(jìn)而描點(diǎn)連線畫(huà)出圖象即可.

(3)根據(jù)圖象從而得出y<0時(shí),x的取值范圍.

試題解析:(1)∵y=-x2+4x=-(x-2)2+4,

∴對(duì)稱軸是過(guò)點(diǎn)(2,4)且平行于y軸的直線x=2;

(2)列表得:

x

-1

0

1

2

3

4

5

y

-5

0

3

4

3

0

-5

描點(diǎn),連線.

(3)由圖象可知,

當(dāng)y<0時(shí),x的取值范圍是x<0x>4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,是對(duì)角線上一點(diǎn),過(guò)點(diǎn)作矩形,其中點(diǎn)上,點(diǎn)上.

的度數(shù);

試說(shuō)明,;

若正方形的面積為,求矩形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次打籃球時(shí),籃球傳出后的運(yùn)動(dòng)路線為如圖所示的拋物線以小明所站立的位置為原點(diǎn)O建立平面直角坐標(biāo)系,籃球出手時(shí)在O點(diǎn)正上方1m處的點(diǎn)P.已知籃球運(yùn)動(dòng)時(shí)的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y=-x2+x+c.

1求y與x之間的函數(shù)表達(dá)式;

2球在運(yùn)動(dòng)的過(guò)程中離地面的最大高度

3小亮手舉過(guò)頭頂,跳起后的最大高度為BC=2.5m若小亮要在籃球下落過(guò)程中接到球,求小亮離小明的最短距離OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(-1,0),B(1,0),Cy軸正半軸上一點(diǎn),點(diǎn)D為第三象限一動(dòng)點(diǎn),CDABF,且∠ADB=2BAC,

(1)求證:∠ADB與∠ACB互補(bǔ);

(2)求證:CD平分∠ADB;

(3)若在D點(diǎn)運(yùn)動(dòng)的過(guò)程中,始終有DC=DA+DB,在此過(guò)程中,∠BAC的度數(shù)是否變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;<a<﹣其中正確結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程

是方程的一個(gè)根,求的值和方程的另一根;

當(dāng)為何實(shí)數(shù)時(shí),方程有實(shí)數(shù)根;

,是方程的兩個(gè)根,且,試求實(shí)數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC中,DAB的中點(diǎn),DCAC,且∠BCD=30°,求∠CDA的正弦值、余弦值和正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)P,B兩點(diǎn),則k的值為______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案