【題目】已知關(guān)于的方程.
若是方程的一個根,求的值和方程的另一根;
當為何實數(shù)時,方程有實數(shù)根;
若,是方程的兩個根,且,試求實數(shù)的值.
【答案】(1) 另一根為x=2 ;(2) ;(3)m=5.
【解析】
(1)將代入原方程得,解方程求得m=2;設(shè)方程的另一根是,根據(jù)根與系數(shù)的關(guān)系可得解得x=2;(3)當時,方程是一元一次方程,,此時方程有實數(shù)根;當≠時,原方程為一元二次方程,要使方程有實數(shù)根,則有,代入數(shù)值求得m的取值范圍即可;(3)根據(jù)根與系數(shù)的關(guān)系可得,,由可得,解方程求得m的值,結(jié)合(2)的結(jié)果對m的值進行取舍即可.
將代入原方程得,
解得:,
設(shè)方程的另一根是,則,
∴另一根為.
當時,方程是一元一次方程,,此時的實數(shù)解為;
當不等于時,原方程為一元二次方程,要使方程有實數(shù)根,則有,
∴.
解得:.
即當時,方程有實數(shù)根.
∵,.
.
解得:,,
∵,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2經(jīng)過平移得到拋物線y=ax2+bx,其對稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為( )
A. , B. ,﹣ C. ,﹣ D. ﹣,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x.
(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;
(2)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象(列表、描點、連線);
(3)根據(jù)圖象,寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC與△ADE中,∠BAC=∠DAE=90°,AD=AE,AB=AC,且B、D、E三點在一條直線上.
(1)求證:BD=CE.
(2)求∠BEC的度數(shù).
(3)寫出BE與AE、CE的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為BC上一點,以AD為腰作等腰△ADE,且AD=AE, ∠BAC=∠DAE=30°,連接CE,若BD=2,S△DCE=,則CD的長為 ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠一種產(chǎn)品去年的產(chǎn)量是100萬件,計劃明年產(chǎn)量達到121萬件,假設(shè)去年到明年這種產(chǎn)品產(chǎn)量的年增長率相同。
(1)求去年到明年這種產(chǎn)品產(chǎn)量的年增長率;
(2)今年這種產(chǎn)品的產(chǎn)量應(yīng)達到多少萬件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=x﹣2與兩坐標軸分別交于點A,C,交y=(x>0)于點P,PQ⊥x軸于點Q,CQ=1.
(1)求反比例函數(shù)解析式;
(2)平行于y軸的直線x=m分別交y=x﹣2,y=(x>0)于點D,B(B在線段AP上方),若S△BOD=2,求m值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com