精英家教網 > 初中數學 > 題目詳情
如圖所示,太陽光線與地面成60°角,一棵傾斜的大樹與地面成30°角,這時測得大樹在地面上的影子約為10米,則大樹的高約為________米.(保留根號)
 
解:如圖,作AD⊥CD于D點.

∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,
∴∠CAB=30°.
∴BC=AC=10m,
在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,
∴BD=15.
∴在Rt△ABD中,AB=BD÷cos30°=15
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,BC=3,CD=1.

(1)求證tan∠AEC=
(2)請?zhí)骄緽M與DM的關系,并給出證明.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在Rt中,,cm,正方形的面積為cm2于點,求的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為     

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在平行四邊形ABCD中,AM⊥BC,AN⊥CD,M、N為垂足,若AB=13,BM=5,MC=9,則MN的長度為    .  

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)情景一:如圖(1)中AC=40m,CB=30m,從教室樓到宿舍樓,總有少數同學不走人行道AC和BC,而直接橫穿草坪(即從A到B),你認為他們這樣走,近了多少米?說明理由.

(2)情景二:M、N是河流l旁的兩個村莊,現(xiàn)要在河邊修一個抽水站向M、N村供水,問抽水站修在什么地方才能使所需的管道最短?請在圖(2)中畫出抽水站點P的位置.(保留作圖痕跡,不寫作法)

(3)數學知識來源于生活并且用來為人們服務,上面兩個情景你贊同哪一個?你有何感想?(簡要說明)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,∠B=∠A,則AB=    AC.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

極具特色的“八卦樓”(又稱“威鎮(zhèn)閣”)是漳州的標志性建筑,它建立在一座平臺上.為了測量“八卦樓”的高度AB,小華在D處用高1.1米的測角儀CD,測得樓的頂端A的仰角為22o;再向前走63米到達F處,又測得樓的頂端A的仰角為39o(如圖是他設計的平面示意圖).已知平臺的高度BH約為13米,請你求出“八卦樓”的高度約多少米?
(參考數據:sin22o,tan220,sin39o,tan39o)   

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,某游樂場內滑梯的滑板與地面所成的角∠A = 35°,滑梯的高度BC = 2米,則滑板AB的長約為_________米(精確到0.1).

查看答案和解析>>

同步練習冊答案