在平行四邊形ABCD中,AM⊥BC,AN⊥CD,M、N為垂足,若AB=13,BM=5,MC=9,則MN的長(zhǎng)度為    .  
連接AC
∵ AM垂直BC,AB=13,BM=5
∴ AM=12
∵ AM垂直BC,MC=9,AM=12
∴ AC=15
∵ AM垂直BC,AN垂直CD
∴∠AMC+∠ANC=90+90=180度
∴ AMCN四點(diǎn)共圓
∴∠MNC=∠MAC
∵ AC=15,MC=9,AM垂直BC
∴ sin(∠MNC)=sin(∠MAC)=MC/AC=3/5
∵在平行四邊形ABCD中 DC//AB
∴∠MCN=180-∠ABM
∴ sin(∠MCN)=sin(∠ABM)
∵ AB=13,AM=12,AM垂直BC
∴ sin(∠MCN)=sin(∠ABM)=AM/AB=12/13
∵在三角形MCN中由正弦定理有 MN/sin(∠MCN)=MC/sin(∠MNC)
∵sin(∠MCN=12/13,MC=9,sin(∠MNC)=3/5
∴ MN=180/13
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知等腰直角三角形的直角邊長(zhǎng)為1,以Rt△的斜邊為直角邊,畫第二個(gè)等腰直角三角形,再以Rt△的斜邊為直角邊,畫第三個(gè)等腰直角三角形,…,以此類推;

(1)第5個(gè)等腰直角三角形的斜邊長(zhǎng)是________________;
(2)第個(gè)等腰直角三角形的斜邊長(zhǎng)是________________;(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中陰影部分的面積為 (  ).
A.9B.3C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,則Rt△ABC的面積是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在甲村至乙村的公路有一塊山地正在開發(fā),現(xiàn)有一C處需要爆破.已知點(diǎn)C與公路上的?空続的距離為300米,與公路上的另一?空綛的距離為400米,且CA⊥CB,如圖所示.為了安全起見,爆破點(diǎn)C周圍半徑250米范圍內(nèi)不得進(jìn)入,問在進(jìn)行爆破時(shí),公路AB段是否有危險(xiǎn)而需要暫時(shí)封鎖? 請(qǐng)通過計(jì)算進(jìn)行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,太陽光線與地面成60°角,一棵傾斜的大樹與地面成30°角,這時(shí)測(cè)得大樹在地面上的影子約為10米,則大樹的高約為________米.(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(7分)如圖,小明用一塊有一個(gè)銳角為的直角三角板測(cè)量樹高,已知小明離樹的距離為3米,DE為1.68米,那么這棵樹大約有多高?(精確到0.1米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:;

查看答案和解析>>

同步練習(xí)冊(cè)答案