【題目】如圖①,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=40°,求∠DOE的度數(shù);
(2)如圖①,若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示)
(3)將圖①中的∠COD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,OE平分∠BOC.
①探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
②在∠AOC的內(nèi)部有一條射線OF,且∠AOC﹣3∠AOF=2∠BOE,試確定∠AOF與∠DOE的度數(shù)之間的關(guān)系,說明理由.
【答案】(1)20°;(2)∠DOE=;(3)①∠DOE=∠AOC,理由見解析;②4∠EOD﹣3∠AOF=180°,理由見解析.
【解析】
首先求得∠COB的度數(shù),然后根據(jù)角平分線的定義求得∠COE的度數(shù),再根據(jù)∠DOE=∠COD-∠COE即可求解;
解法與(1)相同,把①中的60°改成α即可;
①把∠AOC的度數(shù)作為已知量,求得∠BOC的度數(shù),然后根據(jù)角的平分線的定義求得∠COE的度數(shù),再根據(jù)∠DOE=∠COD-∠COE求得∠DOE,即可解決;
②由∠AOC﹣3∠AOF=2∠BOE, OE平分∠BOC,∠AOC和∠DOE的關(guān)系,可以建立各個(gè)角之間的關(guān)系,從而可以得到∠AOF與∠DOE的度數(shù)之間的關(guān)系.
(1)∵∠AOC=40°
∴∠COB=180°﹣∠AOC=180°﹣40°=140°
∵OE平分∠COB
∴∠COE=∠COB=70°,
又∵∠COD=90°
∴∠EOD=∠COD﹣∠COE=20°
(2)∠DOE=,
(3)①∠DOE=∠AOC,理由如下:
∵OE平分∠COB
∴∠COE=∠COB
又∵∠COD=90°
∴∠EOD=∠COD﹣∠COE=90°﹣∠COB,
∵∠COB+∠AOC=180°
∴∠COB=180°﹣∠AOC
∴∠EOD=90°﹣(180°﹣∠AOC)=∠AOC
②4∠EOD﹣3∠AOF=180°,理由如下:
∵OE平分∠COB
∴∠EOB=∠COE
∴∠AOC﹣2∠BOE=∠AOC﹣2∠COE
=∠AOC﹣2(90°﹣∠EOD)
=∠AOC+2∠EOD﹣180°
又∵∠DOE=∠AOC
∴∠AOC﹣2∠BOE=4∠EOD﹣180°
∵∠AOC﹣3∠AOF=2∠BOE
∴4∠EOD﹣3∠AOF=180°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)直方圖和扇形統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)直方圖;
(2)求扇形統(tǒng)計(jì)圖中m的值和“E”組對應(yīng)的圓心角度數(shù);
(3)被調(diào)查的學(xué)生每周的課外閱讀時(shí)間的眾數(shù)落在哪一個(gè)范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八、九年級部分學(xué)生的睡眠情況,隨機(jī)抽取了該校八、九年級部分學(xué)生進(jìn)行調(diào)查,已知抽取的八年級與九年級的學(xué)生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如圖的統(tǒng)計(jì)圖表:
睡眠情況分段情況如下
組別 | 睡眠時(shí)間x(小時(shí)) |
A | 4.5≤x<5.5 |
B | 5.5≤x<6.5 |
C | 6.5≤x<7.5 |
D | 7.5≤x<8.5 |
E | 8.5≤x<9.5 |
根據(jù)圖表提供的信息,回答下列問題:
(Ⅰ)直接寫出統(tǒng)計(jì)圖中a的值
(Ⅱ)睡眠時(shí)間少于6.5小時(shí)為嚴(yán)重睡眠不足,則從該校八、九年級各隨機(jī)抽一名學(xué)生,被抽到的這兩位學(xué)生睡眠嚴(yán)重不足的可能性分別有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是( )
A.68°
B.20°
C.28°
D.22°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請回答下列問題:
(Ⅰ)被抽樣調(diào)查的學(xué)生有 人,并補(bǔ)全條形統(tǒng)計(jì)圖 ;
(Ⅱ)每天戶外活動(dòng)時(shí)間的中位數(shù)是 (小時(shí));
(Ⅲ)該校共有2000名學(xué)生,請估計(jì)該校每天戶外活動(dòng)時(shí)間超過1小時(shí)的學(xué)生有 人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制造廠的某車間生產(chǎn)圓形鐵片和長方形鐵片,如圖,兩個(gè)圓形鐵片和一個(gè)長方形鐵片可以制造成一個(gè)油桶.已知該車間有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長方形鐵片80片.問安排生產(chǎn)圓形鐵片和長方形鐵片的工人各為多少人時(shí),才能使生產(chǎn)的鐵片恰好配套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了節(jié)約用水,對自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸的部分,按2元/噸收費(fèi);超過10噸的部分按2.5元/噸收費(fèi).
(1)若黃老師家5月份用水16噸,問應(yīng)交水費(fèi)多少元?
(2)若黃老師家6月份交水費(fèi)30元,問黃老師家5月份用水多少噸?
(3)若黃老師家7月用水a噸,問應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=3,DC=1,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2的對稱軸是直線x=1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E.
(1)求拋物線解析式;
(2)若點(diǎn)P在第一象限內(nèi),當(dāng)OD=4PE時(shí),求四邊形POBE的面積;
(3)在(2)的條件下,若點(diǎn)M為直線BC上一點(diǎn),點(diǎn)N為平面直角坐標(biāo)系內(nèi)一點(diǎn),是否存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是菱形?若存在上,直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com