【題目】如圖,在ABCD中,AB=1,BC=,對(duì)角線AC,BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交于BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為 時(shí),四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說明理由;如果可能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
【答案】(1)90°;(2)在旋轉(zhuǎn)過程中,四邊形BEDF能是菱形,此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù)是45°.
【解析】
(1)根據(jù)∠BAC=∠AOF=90°推出AB∥EF,根據(jù)平行四邊形性質(zhì)得出AF∥BE,即可推出四邊形ABEF是平行四邊形;
(2)證△DFO≌△BEO,推出OF=OE,得出四邊形BEDF是平行四邊形,根據(jù)勾股定理求出AC,求出OA=AB=1,求出∠AOB=45°,根據(jù)∠AOF=45°,推出EF⊥BD,根據(jù)菱形的判定推出即可.
解:(1)結(jié)論:旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形.
理由:∵∠AOF=90°,∠BAO=90°,
∴∠BAO=∠AOF,
∴AB∥EF,
又∵四邊形ABCD是平行四邊形,
∴AF∥EB,
∴四邊形ABEF是平行四邊形;
(2)當(dāng)旋轉(zhuǎn)角∠AOF=45°時(shí),四邊形BEDF是菱形.理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,BO=DO,
∴∠FDO=∠EBO,∠DFO=∠BEO,
在△DFO和△BEO中
∵,
∴△DFO≌△BEO(AAS),
∴OF=OE,
∴四邊形BEDF是平行四邊形,
∵AB=1,BC=,
∴在Rt△BAC中,由勾股定理得:AC=2,
∴AO=1=AB,∵∠BAO=90°,
∴∠AOB=45°,
又∵∠AOF=45°,
∴∠BOF=90°,
∴BD⊥EF,
∴四邊形BEDF是菱形,
即在旋轉(zhuǎn)過程中,四邊形BEDF能是菱形,此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù)是45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(-1,1)且經(jīng)過點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則S△BCD:S△ABO=( )
A. 8:1B. 6:1C. 5:1D. 4:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸相交于點(diǎn)C,過點(diǎn)A作AD⊥x軸,垂足為D.
(1)若∠AOB=60°,AB∥x軸,AB=2,求a的值;
(2)若∠AOB=90°,點(diǎn)A的橫坐標(biāo)為﹣4,AC=4BC,求點(diǎn)B的坐標(biāo);
(3)延長AD、BO相交于點(diǎn)E,求證:DE=CO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC邊上一點(diǎn),且AB=AE,若AE平分∠DAB,∠EAC=25°,則∠AED的度數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤=b2-4ac<0中,成立的式子有( )
A. ②④⑤ B. ②③⑤
C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2分別是一滑雪運(yùn)動(dòng)員在滑雪過程中某一時(shí)刻的實(shí)物圖與示意圖,已知運(yùn)動(dòng)員的小腿與斜坡垂直,大腿與斜坡平行,且三點(diǎn)共線,若雪仗長為,,,求此刻運(yùn)動(dòng)員頭部到斜坡的高度(精確到)(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CB交x軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2019個(gè)正方形的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗和哥哥小明分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達(dá)圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時(shí)間x(min)之間的函數(shù)圖象如圖所示:
(1)求兩人相遇時(shí)小明離家的距離;
(2)求小麗離距離圖書館500m時(shí)所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商在今年1月份用2.2萬元購進(jìn)種水果和種水果共400箱.其中、兩種水果的數(shù)量比為5:3.已知種水果的售價(jià)是種水果售價(jià)的2倍少10元,預(yù)計(jì)當(dāng)月即可全部售完.
(1)該水果商想通過本次銷售至少盈利8000元,則每箱水果至少賣多少元?
(2)若、兩種水果在(1)的價(jià)格銷售,但在實(shí)際銷售中,受市場影響,水果的銷量還是下降了,售價(jià)下降了;水果的銷量下降了,但售價(jià)不變.結(jié)果、兩種水果的銷售總額相等.求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com