【題目】酒泉市教育局計劃對全市八年級學生學習情況進行調查,隨機從全市抽取城市和農村兩組學生的期中數學成績,每組10人進行對比分析.繪制統(tǒng)計圖如下.根據圖中信息,完成下列問題.
(1)完成下表;
平均數 | 中位數 | 眾數 | 方差 | |
城市 | ||||
農村 |
(2)依據上表的信息談談你的看法.
【答案】(1)詳見解析;(2)從平均數、中位數來看,城市和農村學生的期中數學成績的平均水平差異不大,但從方差來看,城市學生的成績波動比農村學生的成績波動大,即更加分散.(答案不唯一,有理有據即可)
【解析】
(1)先根據兩個統(tǒng)計圖分別得出城市、農村10人的數據,再分別根據平均數、中位數、眾數、方差的定義和計算公式逐個計算即可;
(2)根據城市、農村10人數據的平均數、中位數、眾數、方差進行點評即可.
(1)由統(tǒng)計圖可得:城市10人的期中數學成績?yōu)?/span>;農村10人的期中數學成績?yōu)?/span>
則平均數:城市;農村
城市的成績先按低到高(或高到低)排序為
中位數:城市;農村
眾數:城市;農村或
方差:城市;農村
因此,填表如下:
平均數 | 中位數 | 眾數 | 方差 | |
城市 | 80 | 85 | 90 | 280 |
農村 | 80 | 80 | 70和80 | 160 |
(2)從平均數、中位數來看,城市和農村學生的期中數學成績的平均水平差異不大,但從方差來看,城市學生的成績波動比農村學生的成績波動大,即更加分散.
科目:初中數學 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.
請結合以上信息解答下列問題:
(1)m= ;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為 ;
(4)已知該校共有1200名學生,請你估計該校約有 名學生最喜愛足球活動.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數 y=﹣x+4 的圖象與反比例 y=(k 為常數, 且 k≠0)的圖象交于 A(1,a)、B(b,1)兩點.
(1)求點 A、B 的坐標及反比例函數的表達式;
(2)在 x 軸上找一點,使 PA+PB 的值最小,求滿足條件的點 P 的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=kx+2與x軸、y軸分別交于A、B兩點,OA:OB=.以線段AB為邊在第二象限內作等腰Rt△ABC,∠BAC=90°.
(1)求點A的坐標和k的值;
(2)求點C坐標;
(3)直線y=x在第一象限內的圖象上是否存在點P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點P坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:如圖1,若一個四邊形的兩條對角線互相垂直,則稱這個四邊形為垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由;
(2)性質探究:如圖1,試在垂美四邊形ABCD中探究AB2,CD2,AD2,BC2之間的關系,并說明理由;
(3)解決問題:如圖3,分別以Rt△ABC的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結CE、BG、GE、CE交BG于點N,交AB于點M.已知AC=,AB=2,求GE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著科技的發(fā)展,油電混合動力汽車已經開始普及,某種型號油電混合動力汽車,從甲地到乙地燃油行駛純燃油費用80元,從甲地到乙地用電行駛純電費用30元,已知每行駛1千米,純燃油費用比純用電費用多0.5元
(1)求每行駛1千米純用電的費用;
(2)若要使從甲地到乙地油電混合行駛所需的油、電費用合計不超過50元,則至多用純燃油行駛多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將圖1,將一張直角三角形紙片ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.
(1)如圖2,正方形網格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖2中畫出折痕;
(2)如圖3,在正方形網格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是 ;
(4)如果一個四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數關系的圖象為下列選項中的( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com