【題目】(觀察)方程的解是的解是

的解是的解是

(發(fā)現(xiàn))根據(jù)你的閱讀回答問題:

(1)的解為_______;

(2)關(guān)于的方程的解為_______(用含的代數(shù)式表示),并利用“方程的解的概念”驗證.

(類比)

(3)關(guān)于的方程的解為_________(用含的代數(shù)式表示).

【答案】1x=3;(2x=8-a(a≠4);(3x=2b-a(ab)

【解析】

1)(2)觀察已知可以發(fā)現(xiàn):方程的解與第二個分式的分子之和為8,由此可以得出結(jié)論;

3)去分母解方程即可得出結(jié)論.

1)由已知可得:方程的解與第二個分式的分子之和為8,∴x=8-5=3

經(jīng)檢驗,x=3是原方程的解;

2)由已知可得:方程的解與第二個分式的分子之和為8,x=8-a(a4),經(jīng)檢驗,x=8-a(a4)是原方程的解;

3)去分母得:x-a=2(x-b),去括號得:x-a=2x-2b,解得:x=2b-a(ab),經(jīng)檢驗,x=2b-a(ab)是原方程的解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知多項式3x62x24的常數(shù)項為a,次數(shù)為b

1)設ab分別對應數(shù)軸上的點A、點B,請直接寫出a   ,b   ,并在數(shù)軸上確定點A、點B的位置;

2)在(1)的條件下,點P以每秒2個單位長度的速度從點AB運動,運動時間為t秒:

①若PAPB6,求t的值,并寫出此時點P所表示的數(shù);

②若點P從點A出發(fā),到達點B后再以相同的速度返回點A,在返回過程中,求當OP3時,t為何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列各數(shù)填入相應的集合內(nèi):

3.1415926,﹣2.1,|﹣|, 0, , -2.626626662…,,

正數(shù)集合:{ …}

負數(shù)集合:{ …}

有理數(shù)集合:{ …}

無理數(shù)集合:{ …}.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1-15-[-1-4-22×5]

2-12019-1-÷|3--32|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如下表:

X

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0;
②當x>1時,y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的個數(shù)為( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿著ABCD路徑勻速運動到點D,設PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.

(1)求證:AC是⊙O的切線;
(2)當BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).

查看答案和解析>>

同步練習冊答案