【題目】已知,AB是⊙O的直徑,AB=8,點C在⊙O的半徑OA上運動,PC⊥AB,垂足為C,PC=5,PT為⊙O的切線,切點為T.
(1)如圖1,當C點運動到O點時,求PT的長;
(2)如圖2,當C點運動到A點時,連接PO、BT,求證:PO∥BT;
(3)如圖3,設PT=y,AC=x,求y與x的解析式并求出y的最小值.
【答案】(1)PT=3;(2)見解析;(3)y=,y最小=3.
【解析】
(1)連接OT,根據(jù)題意,由勾股定理可得出PT的長;
(2)連接OT,則OP平分劣弧AT,則∠AOP=∠B,從而證出結論;
(3)設PC交⊙O于點D,延長線交⊙O于點E,由相交弦定理,可得出CD的長,再由切割線定理可得出y與x之間的關系式,進而求得y的最小值.
解:如圖(1),連接OT,
∵PC=5,OT=4,
∴由勾股定理得,
(2)證明:如圖(2)連接OT,
∵PT,PC為⊙O的切線,
∴∠OPA=∠OPT,∠PAO=∠PTO,
∴∠POA=∠POT,
∵∠AOT=2∠B,
∴∠AOP=∠B,
∴PO∥BT;
(3)解:如圖(3),連接PO,PT
∵AB是⊙O的直徑,AB=8,AC=x
∴CO=4﹣x;
又∵PC⊥AB
∴
∴y=
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點,A點的坐標為(﹣3,0),B點在原點的左側,與y軸交于點C(0,3),點P是直線BC上方的拋物線上一動點
(1)求這個二次函數(shù)的表達式;
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C(如圖1所示),那么是否存在點P,使四邊形POP′C為菱形?若存在,請此時點P的坐標:若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABCP的面積最大,并求出其最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+4經(jīng)過A(﹣3,0)、B(4,0)兩點,且與y軸交于點C,D(4﹣4,0).動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度向點B移動,同時動點Q從點C出發(fā),沿線段CA以某一速度向點A移動.
(1)求該拋物線的解析式;
(2)若經(jīng)過t秒的移動,線段PQ被CD垂直平分,求此時t的值;
(3)在第一象限的拋物線上取一點G,使得S△GCB=S△GCA,再在拋物線上找點E(不與點A、B、C重合),使得∠GBE=45°,求E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y=|y1|+y2﹣1,其中y1=x﹣3,y2與x成反比例關系,且當x=2時,y2=3.
(1)根據(jù)給定的條件寫出y與x的函數(shù)表達式及自變量x的取值范圍: .
(2)當x>0時,根據(jù)y與x的函數(shù)表達式,選取適當?shù)淖宰兞?/span>x的值,完成下表,并根據(jù)表中數(shù)據(jù),在平面直角坐標系xOy中描點,畫出該函數(shù)x>0時的圖象.
x | …… | …… | |||||||
y | …… | …… |
(3)當x>0時,結合函數(shù)圖象,解決相關問題:估計y=﹣x+5時,x的值約為 .(保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC,BD交于O,EO⊥AC.
(1)若△ABE的周長為10cm,求平行四邊形ABCD的周長;
(2)若∠ABC=78°,AE平分∠BAC,試求∠DAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=60°,∠C=90°,將△ABC繞點B順時針旋轉(zhuǎn)150°,得到△DBE.請僅用無刻度的直尺,按要求畫圖(保留畫圖痕跡,在圖中標出字母,并在圖下方表示出所畫圖形).
(1)在圖①中,畫一個等邊三角形;
(2)在圖②中,畫一個等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小南利用幾何畫板畫圖,探索結論,他先畫∠MAN=90°,在射線AM上取一點B,在射線AN上取一點C,連接BC,再作點A關于直線BC的對稱點D,連接AD、BD,得到如圖所示圖形,移動點C,小南發(fā)現(xiàn):當AD=BC時,∠ABD=90°;請你繼續(xù)探索;當2AD=BC時,∠ABD的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-2x+m-1=0.
(1)若此方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)當Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根時,求Rt△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com