【題目】已知y|y1|+y21,其中y1x3,y2x成反比例關(guān)系,且當(dāng)x2時,y23

1)根據(jù)給定的條件寫出yx的函數(shù)表達(dá)式及自變量x的取值范圍:   

2)當(dāng)x0時,根據(jù)yx的函數(shù)表達(dá)式,選取適當(dāng)?shù)淖宰兞?/span>x的值,完成下表,并根據(jù)表中數(shù)據(jù),在平面直角坐標(biāo)系xOy中描點,畫出該函數(shù)x0時的圖象.

x

……

……

y

……

……

3)當(dāng)x0時,結(jié)合函數(shù)圖象,解決相關(guān)問題:估計y=﹣x+5時,x的值約為   .(保留一位小數(shù))

【答案】1y|x3|+1,(x≠0);(2)見解析;(31.65.5

【解析】

1)設(shè)y2,則y|y1|+y21|x3|+1,代入x2時,y23,即可求出k,即可得出yx的函數(shù)表達(dá)式及自變量x的取值范圍;

2)列表,描點畫圖;

3)估計y=﹣x+5時,結(jié)合函數(shù)圖象即可求得x的值.

1y2x成反比例,

設(shè)y2,

y|y1|+y21|x3|+1,

∵當(dāng)x2時,y23,

3|23|+1

k6,

y|x3|+1,(x≠0),

故答案為y|x3|+1,(x≠0);

2)當(dāng)x0時,完成下表:

x

……

1

2

3

4

5

6

7

……

y

……

7

3

1

3

……

畫出圖象如圖:

3)結(jié)合函數(shù)圖象可知,估計y=﹣x+5時,x的值約為1.65.5,

故答案為1.65.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,我們將橫、縱坐標(biāo)都是整數(shù)的點稱為“整點”.若拋物線yax22ax+a+3x軸圍成的區(qū)域內(nèi)(不包括拋物線和x軸上的點)恰好有8個“整點”,則a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)校園詩歌大賽結(jié)束后張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下

(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;

(2)賽前規(guī)定成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78,試判斷他能否獲獎并說明理由;

(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當(dāng)將遮陽傘撐開至OD位置時,測得∠ODB45°,當(dāng)將遮陽傘撐開至OE位置時,測得∠OEC30°,且此時遮陽傘邊沿上升的豎直高度BC20cm,求若當(dāng)遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若整數(shù)a使關(guān)于x的分式方程的解為整數(shù),且使關(guān)于y的不等式組有解,且最多有4個整數(shù)解,則符合條件的所有整數(shù)a的和為( 。

A.3B.8C.13D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,點A、B分別在x軸和y軸上,且OAOB,邊AC所在直線解析式為yx,若ABC的內(nèi)心在y軸上,則tanACB的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,AB8,點C在⊙O的半徑OA上運動,PCAB,垂足為C,PC5,PT為⊙O的切線,切點為T

1)如圖1,當(dāng)C點運動到O點時,求PT的長;

2)如圖2,當(dāng)C點運動到A點時,連接PO、BT,求證:POBT;

3)如圖3,設(shè)PTy,ACx,求yx的解析式并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABCA點順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.

(1)求證:△AEC≌△ADB;

(2)若AB=,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是⊙的直徑,點的延長線上,是⊙上的兩點,,,延長的延長線于點

1)求證:是⊙的切線;

2)求證:;

3)若,求弦的長.

查看答案和解析>>

同步練習(xí)冊答案