【題目】如圖,已知在ABC中,∠A60°,∠C90°,將ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°,得到DBE.請(qǐng)僅用無刻度的直尺,按要求畫圖(保留畫圖痕跡,在圖中標(biāo)出字母,并在圖下方表示出所畫圖形).

1)在圖①中,畫一個(gè)等邊三角形;

2)在圖②中,畫一個(gè)等腰直角三角形.

【答案】(1)見解析;(2)見解析.

【解析】

1)如圖①中,延長EBAC的延長線于F,可得∠A=ABF=60°,故ABF為等邊三角形.
2)如圖②中,連接ADEBH,由題意可知AB=BD,∠ABC=30°,故∠ADB=BAD=15°,可求得∠EDH=45°,即可得EDH為等腰直角三角形.

1)如圖①中,延長EBAC的延長線于FABF即為所求.

2)如圖②中,連接ADEBH,EDH即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有3個(gè)相同的小球,將3個(gè)小球分別標(biāo)示號(hào)碼12、3,每次從盒子里隨機(jī)取出1個(gè)小球且取后放回,預(yù)計(jì)取球10次.若規(guī)定每次取球時(shí),取出的號(hào)碼即為得分,則前八次的取球得分情況如下表所示

次數(shù)

1

2

3

4

5

6

7

8

9

10

得分

2

1

1

2

2

3

2

3

1)設(shè)第1次至第8次取球得分的平均數(shù)為,求的值:

2)求事件9次和第10次取球得分的平均數(shù)等于發(fā)生的概率;(列表法或樹狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若整數(shù)a使關(guān)于x的分式方程的解為整數(shù),且使關(guān)于y的不等式組有解,且最多有4個(gè)整數(shù)解,則符合條件的所有整數(shù)a的和為( 。

A.3B.8C.13D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,AB8,點(diǎn)C在⊙O的半徑OA上運(yùn)動(dòng),PCAB,垂足為C,PC5PT為⊙O的切線,切點(diǎn)為T

1)如圖1,當(dāng)C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí),求PT的長;

2)如圖2,當(dāng)C點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),連接PO、BT,求證:POBT;

3)如圖3,設(shè)PTy,ACx,求yx的解析式并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形的兩個(gè)內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得ABE也是準(zhǔn)互余三角形?若存在,請(qǐng)求出BE的長;若不存在,請(qǐng)說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對(duì)角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABCA點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.

(1)求證:△AEC≌△ADB;

(2)若AB=,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,對(duì)角線的垂直平分線相交于點(diǎn),與相交于點(diǎn),連接。

1)求證:四邊形是菱形;

2)若,求的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣4,﹣3,﹣2,﹣1,01,34,5這九個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,則數(shù)a使關(guān)于x的不等式組至少有四個(gè)整數(shù)解,且關(guān)于x的分式方程1有非負(fù)整數(shù)解的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+ca0)的對(duì)稱軸為直線x=1,過點(diǎn)(﹣4,0),(0,﹣2).

1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

2)當(dāng)﹣4x4時(shí),求y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案